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ABSTRACT The Drosophila segment polarity genes constitute the last tier in the segmentation
cascade; their job is to maintain the boundaries between parasegments and provide positional ‘‘read-
outs’’ within each parasegment for the entire developmental history of the animal. These genes
constitute a relatively well-defined network with a relatively well-understood patterning task. In a
previous publication (von Dassow et al. 2000. Nature 406:188–192) we showed that a computer model
predicts the segment polarity network to be a robust boundary-making device. Here we elaborate
those findings. First, we explore the constraints among parameters that govern the network model.
Second, we test architectural variants of the core network, and show that the network tolerates a
wide variety of adjustments in design. Third, we evaluate several topologically identical models that
incorporate more or less molecular detail, finding that more-complex models perform noticeably
better than simplified ones. Fourth, we discuss two instances in which the failure of the network
model to behave in a life-like fashion highlights mechanistic details that need further experimental
investigation. We conclude with an explanation of how the segment polarity network can be
understood as an interwoven conspiracy of simple dynamical elements, several bistable switches and
a homeostat. The robustness with which the network as a whole maintains a spatial regime of stable
cell state emerges from generic dynamical properties of these simple elements. J. Exp. Zool. (Mol.
Dev. Evol.) 294:179–215, 2002. r 2002 Wiley-Liss, Inc.

A decade ago most developmental biologists
worked in the context of ‘‘developmental path-
ways,’’ ordering developmental control genes into
chains of regulatory events contributing to the
eventual phenotype. The prevailing image of the
developmental process evolves to keep up with
new information, and increasingly, biologists
think about developmental and molecular genetics
in terms of networks of dynamic gene interactions
characterized by extensive internal crosstalk and
feedback. While this subtle change is surely
toward a more realistic conception of gene func-
tion, it poses a potentially serious problem, since
highly integrated dynamical networks are much
harder to understand, mechanistically, than are
top–down processes like pathways and cascades.
This is emphasized by a contrast between two
simple maps of gene interactions in Figure 1. In
Figure 1A, published earlier (von Dassow et al.,
’93), it is trivial to evaluate what the map, to the
extent that it reflects reality, does: either the
signals at the top are strong enough, and the
connections sufficiently strong, too, to generate an
output at the bottom, or they are not. On the other

hand, in a slightly later paper, the same authors
(Schmidt et al., ’96) presented Figure 1B, in which
it is essentially impossible to tell, just from the
map alone, what the network does. One correctly
suspects that the behavior of this circuit depends
on dynamical parameters, such as the relative
strengths of the various connections composing
the map, or the initial state of the components, etc.

Another subtle shift epitomized in Figure 1 is
that the phenotypic consequences of gene activity
seem to have evaporated in Figure 1B. Instead of
characterizing the functions of genes and their
products in terms of the production of a develop-
mental event or a specific tissue type (as in
Fig. 1A), there is an implicit focus on the gene
network as a device in and of itself (Hartwell et al.,
’99; von Dassow and Munro, ’99). The more
biologists know about a particular mechanism,
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the more the functions of individual genes and
their products get re-defined in terms of the way
they contribute to intrinsic dynamical behaviors of
the network, whose function is in turn related to
how that intrinsic behavior is deployed in the
three-dimensional context of the developing em-
bryo. But again, it is not possible to answer, using
words and intuition alone, what is the intrinsic
dynamic behavior of this network? An obvious
corollary is that it is also impossible to say, using
intuition alone, whether the map in Figure 1B
actually accounts for any real phenomenon. In this
paper we describe a theoretical study in which we
use a computer simulation model of the segment
polarity network in early Drosophila development

to explore a set of hypotheses about the nature and
function of that network. Brief reports on this
work appeared previously (von Dassow et al.,
2000) and in a companion paper (Meir et al.,
2002b, this issue); here we expand and extend
those results to suggest that the segment polarity
network is a boundary maintaining module that
exhibits remarkable robustness of its steady-state
pattern forming behavior to structural, dynamic,
and architectural perturbations.

PARAMETER SPACE AS A BIOLOGICAL
PROBLEM

Consider a simplistic example: two genes acti-
vating each other (Fig. 2A). Figure 2B exhibits the
simplest plausible formulation of this circuit’s
dynamics: the differential equations say that the
rate of change in concentration of each gene
product depends on a dose–response curve in
which the other gene product appears and a
first-order decay term. In this simple case we can
assess the behavior of the network by setting the
left-hand sides to 0, and plotting the resulting
curves (‘‘nullclines’’; Fig. 2C). Where the null-
clines cross, the system is at steady state; Figure
2C shows that under some conditions there may

Fig. 1. Examples of evolving views of genetic regulatory
architecture. (A) Diagram from von Dassow et al. (’93),
representing the ‘‘genetic cascade’’ or ‘‘developmental path-
way’’ type of thinking necessitated when the task is to order
just a few known components relative to a particular
phenotype. (B) Later diagram from the same authors
(Schmidt et al., ’96) captures a nascent ‘‘gene network’’
notion, stimulated when enough feedback and cross-talk made
the ‘‘pathway’’ metaphor inappropriate.

Fig. 2. Two-activator switch. (A) Two molecular species X
and Y promote each other’s synthesis, and each exhibits first-
order decay. For such a simple system one may solve
graphically for steady states. (C–F) are plots of nullclines for
the equations in B; each curve is obtained by setting the
derivative to zero and solving for the state variable governed
by that equation. Where the curves cross in the state space,
both derivatives are zero. However, such steady-state points
may or may not be stable, as determined by the eigenvalues of
the Jacobian matrix for the differential equations. For certain
choices of parameters, there may be three steady states, only
two of which are stable (dashed circles, large graph): one in
which both species are expressed at high level, and one in
which neither is expressed. In this case, the system behaves
like a switch: for some initial conditions, it evolves determi-
nistically toward one stable steady state, stays there, and
returns after small perturbations; for some other initial
conditions, it evolves toward the other stable state and stays
there; and large perturbations can ‘‘switch’’ the system to one
or the other stable state. However, the stability and even the
existence of each state depends on the choice of values for free
parameters. D and E show that switch-like behavior depends
critically on sigmoid dose–response behavior; if the parameter
n¼1.0, there is no way this system can exhibit switching.
Either the nullclines cross, and only the ‘‘on’’ state is stable,
or they do not, and only the ‘‘off’’ state is stable. In F, despite
that n 41.0, the parameters KX and KY are such that the
nullclines happen not to cross, and only the ‘‘off’’ state is
stable.

———————————————————————"
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exist three steady-state points, two of which are
stable (that is, the system tends to return to those
points if nudged away from them), in which case
this tiny circuit could function as a switch; if
pushed near one or the other stable steady state
(‘‘Off’’ or ‘‘On’’ in this case), it will evolve toward

and remain at that state until perturbed into the
neighborhood (attraction basin) of the other stable
steady state. This switch-like behavior exemplifies
the dependence of the circuit’s behavior on initial
conditions.

However, the switch-like behavior itself depends
intimately on the values of several free para-
meters. The equations in Figure 2B involve nine
free parameters, which represent empirically
measurable values governing the dynamics, such
as the half-life of each molecular species, the
maximal transcription rate, etc. Parameters could
themselves be functions of other genes extrinsic to
the putative module of interest, or they may be
functions of temperature and other environmental
variables, etc., but with respect to the intrinsic
behavior of the circuit in question they are
constants whose values must be specified some-
how. As shown in Figure 2D–F, under some
parameter conditions the switch-like behavior is
completely abolished. Therefore, although the
dynamical argument confirms that the circuit in
Figure 2B could function as a switch, there is no
way to tell, from the network’s topology alone,
if it actually does.1 If such a simple device as the
two-activator switch is so problematic, imagine
how useless topology alone becomes when
confronted with networks only a little bit more
complex, such as Figure 1B.

This is not a mere mathematical pet peeve; it
has a genuinely important biological meaning. We
can think of the free parameters of a network as
the basis for a space (a nine-dimensional space in
the case of Fig. 2) which the network inhabits.
Each point in that space is a unique set of values
for each free parameter. Given a functional
behavior for the network, some subset of points
in parameter space (which for any realistic module
will have dozens of axes) might confer that
behavior, and the questions become in what
fraction of parameter space does the circuit
‘‘work,’’ and how are the working parameter sets
distributed in that space? Some simple possibilities
are stereotyped in Figure 3: the fraction could be
large, in which case we would say that the
network, or rather the behavior in question, is
robust to parameter variation, whereas if the
fraction of working territory is small, we would
say it is brittle. Moreover, the evolutionary process

1In fact, the situation is really even a little worse: in general it will be
impossible to use formulations like these to answer whether a given set
of known facts about epigenetic relations really does account for a
particular behavior; instead it is only possible to ask whether there
exists any set of parameters for which those facts could do so.
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itself has to find the working territory, and, having
found it, it needs to stay within it. Since para-
meters are themselves mutable functions of the
gene products involved in the network, as well as
possibly others extrinsic to it, mutation constantly
disperses the network through parameter space.
Thus the evolutionary process must confront a
variety of consequences of how the network
resides in parameter space.

THE SEGMENT POLARITY NETWORK

Dozens of man-millennia have gone into dis-
secting segmentation in the fruit fly Drosophila.
While understanding of this process remains
incomplete, segmentation in the Drosophila em-
bryo ranks among the very best-understood of all
developmental mechanisms. The segmentation
process consists of a series of ever-finer-scale
patterning processes, beginning with morphogens

localized in the egg during oogenesis (summarized
in Fig. 4, following a similar diagram presented by
Nagy, ’98; the diagram is meant only to convey the
flavor of the process). Maternal morphogens like
bicoid and nanos form shallow gradients along the
future A–P axis of the embryo. Gap genes respond
to the local concentration of these factors and also
regulate each other’s production, and the func-
tional pattern of expression of these genes is broad
bands with moderate-range gradients for each
shoulder. Pair-rule genes respond, in turn, to the
local concentration of gap gene products, and their
functional expression patterns typically corre-
spond to alternate segments, with short-range
gradients for shoulders. Many of the gap and pair-
rule genes are expressed initially in broad
domains, and their functional expression patterns
emerge through repression by other gap and
pair-rule genes (Gaul and Jackle, ’87; Edgar
et al., ’89; Carroll, ’90; Kraut and Levine, ’91).
The segmental register of most pair-rule gene
expression patterns implies that it is, in effect,
these genes that map out segments at the
blastoderm stage.

Fig. 3. A few possible configurations of functional domains
in parameter space. In each panel the dashed box indicates a
boundary within which one might wish to search for
‘‘functional’’ sets of parameter values. In (A) a large fraction
of parameter choices confer function (the shaded lake). In (B)
the model is limited to a tiny puddle. One might find that the
model functions in several disjunct regions of parameter
space, as in C. Finally, in (D), a smallish functional pond is
surrounded by a much larger swamp of almost-functional
values (darker shading), which might even smoothly grade
into the fully functional region; in such a case one could use
optimization strategies to find the functional pond as long as
one stumbled first into the massive slough surrounding it. In
A the working territory occupies about one-third the ‘‘vo-
lume’’ of the sampled region, whereas in B the working
territory occupies more like one-fiftieth. For a realistic gene
network model, the reader must extrapolate to high dimen-
sionalityFsay, 50 dimensions, as for our core segment
polarity model. As shown in E, if one contiguous half of each
parameter axis within the sampled range were compatible
with the desired function, in a three-dimensional parameter
space one-eighth of the sampled volume would ‘‘work,’’ but
the equivalent box in 50-D space would occupy a miniscule
fraction of the sampled volume. (F) For the core segment
polarity model we found that about one in 200 randomly
sampled parameter sets work; the equivalent box in a 3-D
parameter space would occupy nearly the entire sampled
volume. The rectangular prisms in E and F are meant only to
express the volume fraction, not the complex shape, of the
zone that the functional parameter sets occupy in parameter
space.

3———————————————————————
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However, most of the pair-rule genes are only
transiently expressed, and it is the next tier in the
segmentation cascade, the segment polarity
network, that defines and maintains the bound-
aries between segments. The segment polarity
genes respond to the local combination and
concentrations of pair-rule gene products, and
they come to be expressed in narrow stripes in
every segment (reviewed by Martinas-Arias, ’93;
DiNardo et al., ’94). Their expression patterns,
though more dynamic than this crude character-

ization implies, remain landmarks for the seg-
mental boundary in at least a subset of the embryo
(especially the ventral ectoderm) throughout
embryogenesis and into the adult (via their role
in maintaining the A–P compartment boundary in
imaginal discs). The segment polarity network
includes: engrailed (en) and its duplicate invected
(inv), which encode transcriptional regulators
expressed posterior to the parasegmental bound-
ary (DiNardo et al., ’88; Martinez-Arias et al., ’88);
hedgehog (hh), which encodes a signaling molecule
expressed under the control of Engrailed (Tabata
et al., ’92); wingless (wg), which encodes another
signaling molecule expressed anterior to the
parasegmental boundary (Martinez Arias et al.,
’88; van den Heuvel et al., ’89); patched (ptc),
which encodes the inhibitory and Hh-binding
component of the Hh receptor (Hooper and Scott,
’89; Chen and Struhl, ’96; Marigo et al., ’96;
Alcedo and Noll, ’97; Chen and Struhl, ’98);
cubitus interruptus (ci), a fascinatingly complex
transcriptional regulator that mediates the re-
sponse to Hh signaling (Orenic et al., ’90;
Schwartz et al., ’95; Alexandre et al., ’96;
Dominguez et al., ’96; Aza-Blanc et al., ’97;
Hepker et al., ’97; Von Ohlen et al., ’97; Chen
et al., ’98; Ohlmeyer and Kalderon, ’98; Wang and
Holmgren, ’99); smoothened (smo), fused (fu),
costal (cos), Suppressor of fused (Su(fu)), all
components of the Hh signaling pathway (Alcedo
et al., ’96; van den Heuvel and Ingham, ’96; Sisson
et al., ’97; Alves et al., ’98; Monnier et al., ’98);
frizzled (fz) and Dfrizzled2 (Dfz2), dishevelled

Fig. 4. A conceptual summary of the Drosophila segmen-
tation cascade. Redrawn after a figure of Lisa Nagy’s (’98), and
embellished according to various sources, especially the ‘‘blue
book’’ chapters on segmentation (especially Martinez-Arias,
’93). This diagram, which is incomplete and inaccurate, is only
intended to convey the overall gist of the process, as outlined
in the main text. The graphical design is meant to convey that
the segmentation cascade consists of a series of interwoven
cassettes. The members of each cassette interact strongly with
each other and have strong influences on members of down-
stream cassettes but little if any influence on upstream
cassettes. This diagram is especially misleading with regard
to the interface between the gap genes and the primary pair-
rule genes, and with regard to interactions among pair-rule
genes. In reality, gap genes exert complex stripe-specific
regulatory control over the pair-rule genes, and may repress
a given gene in one region while activating it in another. This
is achieved through the use of quasi-independent enhancer
regions for each hairy or eve stripe. Finally, of course, the
segment polarity network is not adequately represented in
this figure at all!

3———————————————————————
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(dsh), shaggy (sgg), naked (nkd), armadillo (arm),
and pangolin (pan), all components of wingless
signal transduction (Brunner et al., ’97; Cadigan
and Nusse, ’97; van de Wetering et al., ’97; Bhat,
’98; Bhanot et al., ’99); and other genes including
gooseberry (gsb) (Li and Noll, ’93) and sloppy-
paired (slp) (Grossniklaus et al., ’92; Cadigan et al.,
’94b). The en- and wg-expressing domains are
initially set up by the pair-rule genes (Ingham
et al., ’88), but as pair-rule expression fades out, en
and wg become dependent on one another, before
eventually locking into various autoregulatory
loops (DiNardo et al., ’88; Heemskerk et al., ’91;
Vincent and O’Farrell, ’92; Li and Noll, ’93;
Hooper, ’94; Vincent and Lawrence, ’94; Yoffe
et al., ’95) that, in a subset of embryonic
tissues, maintain the compartmentalization of
segments and the expression of the segment
polarity genes throughout development. To sum-
marize, gap and pair-rule genes encode transcrip-
tion factors that are transiently expressed
during segmentation; in contrast, the segment
polarity genes encode a variety of transcription
factors, secreted cell signaling factors, receptors,
transducers, cytoskeletal components, etc., and
they are stably expressed throughout develop-
ment.

We became interested in the segment polarity
network because of the tempting possibility that
this group of genes might qualify as a develop-
mental ‘‘module’’ (von Dassow and Munro, ’99)
that the evolutionary process has repeatedly
dissociated from its inputs and outputs as it has
been redeployed in various developmental con-
texts. Current evidence tentatively suggests on the
basis of the conserved expression of engrailed
homologues (Patel et al., ’89; Patel, ’94; Rogers
and Kaufman, ’96; Grbic et al., ’98; Peterson et al.,
’98), and a few experiments testing the regulatory
relationship between wingless and en (Nagy
and Carroll, ’94; Oppenheimer et al., ’99) suggest
that the segment polarity network may be
involved in segmentation in all insects, perhaps
all arthropods.

The same is apparently not true of the gap and
pair-rule genes that, in Drosophila, provide the
initial inputs to the segment polarity network.
Essentially all insects (excepting certain polyem-
bryonic forms) begin embryogenesis as a syncy-
tium in which the hundreds or thousands of nuclei
share the cytoplasm and thus interact without the
need (or possibility) of cell–cell communication
(Anderson, ’73). The gap and pair-rule networks,
as we know them in Drosophila, as well as the

maternal morphogens, depend on the syncytial
context of segmentation. However, only long-germ
insects, including the flies, bees, and some beetles,
specify all body segments while nuclei share a
common cytoplasm. Short-germ insects such as
the locusts specify only a few segments while
syncytial; the rest emerge sequentially from a
cellular growth zone at the posterior of the
embryo. Perhaps the ancestral condition was
something like the intermediates of today, such
as the dragonflies and many of the bugs and
beetles, in which about half the segments form in
the syncytium, and the rest in a cellular context
(Patel, ’94; Tautz et al., ’94). Homologues of gap
and pair-rule genes exist in extreme short-germ
insects like grasshoppers, and some, but not all, of
these are expressed in patterns that imply roles in
segmentation even during post-cellularization
segment formation (e.g., Patel et al., ’92, 2001;
Sommer and Tautz, ’93; Dawes et al., ’94; Brown
et al., ’94, ’97; Dearden and Akam, 2001). How-
ever, it seems unlikely that the gap and pair-rule
networks, to whatever extent they are involved in
post-cellularization segmentation, function the
same way as they do in Drosophila to provide the
upstream pre-patterning for the segment polarity
network, simply because, again, the known me-
chanism by which these two groups of genes’
expression patterns emerge depends on the ab-
sence of cell boundaries. Thus, it appears that the
segment polarity network has retained its role
in maintaining the segmental boundary despite a
dramatic change in the very nature of the up-
stream patterning mechanisms from which it
takes its prepattern.

Moreover, the segment polarity network, or
subsets thereof, is used in a variety of different
organisms to do a variety of different patterning
tasks. In the most dramatic example, the primor-
dium of the butterfly eyespot expresses several of
the core segment polarity genes in a spatial regime
at least superficially distinct from their segmental
patterns (Keys et al., ’99). Since the eyespot is a
novel adaptation within the Lepidoptera, it is hard
to escape the conclusion that the evolutionary
process somehow managed to re-deploy the seg-
ment polarity network at some point in the
invention of the eyespot.

Thus, the questions we sought to answer, using
a computer simulation model, were as follows: is
our map of the segment polarity network complete
enough to explain how, in the developing fly,
it ‘‘remembers’’ a transient patterning imprint
conferred by the pair-rule genes? Do the known
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interactions among segment polarity genes ac-
count for the apparent modularity of the segment
polarity network? What properties emerge from
the conspiracy of these genes, that we could not
have anticipated from descriptions of the parts
alone?

SYNOPSIS OF OUR PRIOR WORK ON THE
SEGMENT POLARITY MODEL

In a previous report (von Dassow et al., 2000) we
showed that a model encompassing core interac-
tions of the segment polarity network (Fig. 5B)
could mimic patterns of gene expression observed
in living embryos (Fig. 5A). Not only does this core
network have this capacity, it is highly robust to
variation in both parameter values and initial
prepattern. In the jargon of dynamical systems
theory, the network is both structurally and
dynamically stable. We thus concluded that the
facts embodied in the model suffice to explain the
canonical phenomenology of the segment polarity
network: namely, the stable maintenance of two
stable cell states on either side of the paraseg-
mental boundary, with a ground state occupying
the rest of the segment. Furthermore, because the

core network can accomplish this task without any
persistent, extrinsic spatial or temporal biases on
any of its components, and because it can do so
starting from a wide variety of initial conditions,
we concluded that the segment polarity network
qualifies as a developmental module.

That is, the segment polarity network is a device
unto itself. It has certain intrinsic behaviors.
Those behaviors may be selected among either
by treating kinetic parameters as tuning dials, or
by triggering the module with different prepat-
terns. Most remarkably, despite this tunability,
the network is usually so robust that only very
large turns of the metaphorical dials tune the
network to different behaviors. But on the other
hand, it is this very robustness that allows the
network to move around in parameter space,
varying its behavior upon the fundamental
theme. Another way of looking at it is that while
the core topology of the segment polarity network
insulates its dynamical behaviors from subtle,
quantitative perturbations, gross qualitative
perturbations alter its behavior, often (nearly)
discontinuously.

This simple model (hereafter the ‘‘core net-
work,’’ ‘‘core model,’’ or ‘‘spg1’’), because of the

Fig. 5. Core segment polarity network and its task.
Redrawn from von Dassow et al. (2000). (A) By the time the
Drosophila embryo gastrulates, the segmentation cascade has
mapped out all the borders between the developmental units
known as ‘‘parasegments’’; boundaries between paraseg-
ments are defined by the expression of wg to the anterior
(green) and en to the posterior (blue). As development

proceeds the expression patterns of other segment polarity
genes emerge, and we have stereotyped some of the central
players as show. (B) Core segment polarity network described
in von Dassow et al. (2000), which we found was the minimal
realistic network capable of mimicking the stereotyped
pattern shown in A.
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brevity of its treatment to date, raises a variety of
questions. Testing these issues and the develop-
ment of more complex models provided several
intriguing surprises. This paper tells the rest of
the story, divided into four sections intended to be
readable on their own. First, we analyze the
distribution of working parameter sets in para-
meter space, and show that within a single, large
sub-region working parameter sets are very
common. Second, we test several topological
variants of the original segment polarity model
to show that the robustness of the model is not
contingent on a particularly lucky subset of known
interactions. Third, we contrast versions of the
model with greater or lesser complexity, and show
that, to our surprise, increasing the level of detail
actually improves the robustness of the model.
And, finally, we show that challenging the model
with a dynamical patterning test imposes serious
constraints on either details of the mechanism or
the relative values of certain parameters.

RESULTS AND DISCUSSION

Section I: Constraints among parameters

For the core segment polarity model, we showed
previously (von Dassow et al., 2000) that for
essentially any value of most parameters, some
choice of values for the other parameters allows
the core network to perform its basic pattern-
holding task (such a set of values we call a
‘‘solution’’). However, it remains unclear whether
there exist trade-offs among parameters or biases
on the distribution of working values in parameter
space. To explore this we tested 235,000 randomly
chosen parameter sets among which we found
1,120 solutions, chosen from the same bounds
used in our earlier work (see Supplementary
Information for von Dassow et al., 2000), and
then plotted solution frequency versus value for
all parameters (Fig. 6). While for many para-
meters (most half-lives and cooperativity coeffi-
cients, primarily) the search returns an essentially
flat distribution, for an important subset the
distributions are moderately to strongly biased.
This is the case for most of the parameters
governing thresholds (half-maximal coefficients)
for the activities of regulators with respect to their
targets.

For example, Figure 6, column 1, row 4, shows
that solutions are most abundant when the full-
length Ci protein is only a weak activator of
wingless transcription. Figure 6, column 1, row 5,
shows that solutions are far more common if the

Fig. 6. Parameter distributions for the core segment
polarity network model. Each cell of the table is a histogram;
the horizontal axis is the entire range for the named
parameter, and the vertical axis is the number of solutions
that have a particular value. Parameter names follow the
following conventions: ‘‘k’’ indicates a half-maximal activity
coefficient; ‘‘n’’ a cooperativity coefficient; ‘‘H’’ a half-life
(which is actually a time constant); ‘‘r’’ indicates a first-order
rate constant and ‘‘k’’ a second-order constant; the subscript
indicates which interaction the parameter in question gov-
erns, so ‘‘kXy’’ means the half-maximal activity of X with
respect to activation of y transcription; ‘‘X3’’ refers to the
maximum number of molecules of X per cell (only relevant for
molecular species that undergo explicit stoichiometric reac-
tions such as hetero-dimerization); and the subscripts ‘‘Endo’’
and ‘‘Exo’’ refer to endo- and exo-cytosis, respectively,
whereas ‘‘Lmxfer’’ and ‘‘Mxfer’’ refer to exchange between
adjacent and apposite cell faces, respectively. Ranges are
discussed in the Supplement to von Dassow et al. (2000), but
briefly, half-maximal coefficients, flux rates, transformation
rates, and most other parameters range over 3 orders of
magnitude on a log scale. All half-maximal coefficients range
from 10�3 to 1.0, where all concentrations are normalized to
the maximal possible steady-state level for the relevant
molecular species. Half-lives range linearly from 5 to
100 min, cooperativity coefficients range linearly from 2.0 to
10.0 (except nPTC-CID), and saturability coefficients range
linearly from 1.0 to 10.0. These histograms result from a
search of 235,875 randomly chosen parameter sets from
within those ranges, in which 1,120 ‘‘working’’ sets were
found. In several identical searches, the biases shown here are
reproducible, but for the most part the small wiggles are not.
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N-terminal repressor form of the Cubitus inter-
ruptus protein is an avid repressor of wingless
transcription. These observations of the model
may correspond to empirical evidence. In particu-
lar, in ptc�;wgts embryos, Wg cannot contribute to
its own expression, but Ci presumably remains
uncleaved in the absence of Ptc; only weak wg
expression is observed in these embryos, showing
that full-length Ci by itself is a poor activator of wg
(Hooper, ’94). Also, Von Ohlen and colleagues
showed that, in cultured cells, Ci is a weak
activator of the large wg enhancer fragments,
although it strengthens substantially when smal-
ler pieces concentrating candidate Ci binding sites
are used as the test substrate (Von Ohlen and
Hooper, ’97; Von Ohlen et al., ’97). Their findings
suggest that other, perhaps generic, factors limit
the effectiveness of Ci in the context of the full
wingless transcription unit.

Other parallels are evident between our model’s
parameter preferences and the available empirical
evidence. For instance, the core model prefers that
Engrailed not be too good a repressor of cubitus
interruptus transcription (Fig. 6, column 1, row 9).
At the compartment boundary in imaginal discs,
en is expressed in anterior compartment cells
closest to the boundary, but does no more than
slightly diminish the expression of ci in those cells
(Strigini and Cohen, ’97). In contrast, our core
model does not appear to correspond to empirical
observations on another target of Ci, patched (Fig.
6, column 1, rows 6 and 7). The model prefers Ci to
be a good activator but CN a weak repressor of ptc.
Holmgren and colleagues have shown that near
the anterior–posterior compartment boundary in
wing imaginal discs, while decapentaplegic tran-
scription is activated at relatively low levels of Hh
signaling, i.e., at a low ratio of full-length Ci to the
repressor form, ptc is activated only at much
higher levels of Hh signaling and thus higher
ratios of Ci to CN (Wang and Holmgren, ’99).
These authors even propose that Ci must be
hyper-activated at the highest levels of Hh signal-
ing in order to activate ptc. We explore some
possible reasons for this discrepancy shortly.

Interestingly, the model prefers low rates of Wg
transport (Fig. 6, column 5, rows 3–5). Among the
most striking biases in Figure 6 is toward low
values for the rate of cell-to-cell Wg exchange (row
5). For many years it was disputed whether Wg
ever diffused at all from the cells in which it is
synthesized (for example see Gonzalez et al., ’91;
Vincent and Lawrence, ’94; for review see Marti-
nez-Arias, ’93). Although the evidence has re-

cently become fairly conclusive that Wg protein
does indeed travel a considerable distance from its
site of synthesis, there is still much debate about
how it does so (i.e., by free diffusion or transcy-
tosis) and in what form (free or bound to its
receptors or other proteins), or even if Wg
is carried by cells migrating within the plane of
the epithelium (Hacker et al., ’97; Cadigan et al.,
’98; Dierick and Bejsovec, ’98; Moline et al., ’99;
Pfeiffer and Vincent, ’99; Sanson et al., ’99; The
and Perrimon, 2000; Strigini and Cohen, 2000).
We permitted Wg to be endocytosed and then
re-exocytosed in our models to allow for the
possibility of transcytosis, so the core model
subsumes transcytosis, ‘‘free’’ diffusion, and other
mechanisms.

We wondered if Wg transport rates constrain
other parameters in the model. To test this we
constrained the Wg ‘‘diffusion’’ rate rMxferWG

(really a cell-surface-to-apposite-cell-surface ex-
change reaction rate) to vary only within high,
medium, and low sub-ranges and then assessed
the resulting frequency of solutions in a random
sample of parameter sets (Meir et al., 2002b).
Solutions are roughly three times more frequent
when Wg diffusion is slow (with a half-time for
equilibration on the order of hours) compared to
when it is fast (half-time on the order of minutes).2

The distributions of all other Wg transport rates
showed strong responses to the imposed con-
straint: if Wg ‘‘diffusion’’ is rapid, then all these
other rates are constrained to be slow, whereas if
Wg diffusion is slow, then these other parameters
exhibit flat distributions (Fig. 7A). The converse is
also true: if transcytosis of Wg via endocytosis, re-
exocytosis, and transport within the cell mem-
brane is slowed by constraining the appropriate
rates (rEndoWg and rLMxferWG), the constraint upon
Wg cell-to-cell transport is largely alleviated (Fig.
7B). The only other parameter for which we
detected sensitivity to Wg transport rates was
the half-maximal coefficient governing Wg auto-
regulation. In an unconstrained random sampling,
this parameter (kWGwg) is distributed in a broad,
gentle hump centered around values for which
Wg is a moderately weak activator of its own

2The actual parameter used is a dimensionless product of a first-
order rate constant and the characteristic time constant (usually
1 min). The reaction in question is a concentration-dependent
exchange between one cell face and the apposite face of the
neighboring cell, in the case of cell-to-cell ‘‘diffusion,’’ or between
one cell face and the adjacent face of the same cell, in the case of
‘‘diffusion’’ within the membrane of an individual cell. The inverse
of the first-order rate constant, the time constant, or its relative the
half-time, is easier to express in words. When the rate constant is
large, the reaction is fast and the half-time small, and vice versa.
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production (Fig. 6). If Wg is allowed to diffuse
rapidly, this hump sharpens into a rather abrupt
peak, although there remain solutions for most
portions of the entire range; if Wg diffusion is
slow, the hump erodes (Fig. 7D). It likewise erodes
when we prevent transcytosis.

Originally we omitted cell-to-cell Hh transport.
Hh is synthesized as a transmembrane protein but
is autolytically processed (Porter et al., 1996a,b) to
a cholesterol-tethered form. Processed Hh, at least
in some tissues, travels quite far from its site of
synthesis (Strigini and Cohen, ’97), but it may
require assistance from other proteins to do so
(Bellaiche et al., ’98; Burke et al., ’99). However,
there is almost no detectable negative effect of Hh
cell-to-cell transport when we introduce it to the
model. In fact, this process had a very slight but
reproducible positive effect on the frequency of
solutions (see Meir et al., unpublished observa-
tions), but independent of the actual rate of the
process: the distribution of the Hh diffusion rate is
flat (Fig. 7C).

Thus the model exhibits subtle constraints and
trade-offs with regard to parameter distributions,
many of which correspond to empirical observa-
tions. On the basis of the results described in
Figure 6 and other results not shown, we tried to
identify a sub-region of the parameter space in
which solutions are most frequent. By trial and
error we came up with the region described in
Table 1. In this region, the ranges of the half-
maximal coefficients were restricted to the 10-fold
range that best matched the peaks in Figure 6.
Most cooperativity coefficients were forced to be
fairly high except (following the results reported
in Meir et al., 2002b) those governing interactions
between ptc and ci, which were allowed their full
ranges. All half-lives remained unconstrained,

Fig. 7. Parameter distributions as a function of parameter
constraints. Histograms as in Fig. 6. For panels A–D, the
searches are documented in the companion paper by Meir et al.
(2002b, this issue); for panel E the results are cited in the text.
(A) High rates of Wg cell-to-cell diffusion (governed by the
parameter rMxferWG) impose a leftward bias on other Wg
transport rates; slow Wg diffusion rates ameliorate this effect.
(B) Constraining Wg endocytosis and intra-membrane diffu-
sion to low rates alleviates the bias on Wg cell-to-cell diffusion.
(C) There is no bias on the rate of Hh cell-to-cell diffusion. (D)
Subtle influence of Wg cell-to-cell diffusion on wg autoregula-
tion. (E) Lowering cooperativity of ptc–ci interactions, and
providing ubiquitous early ptc, alleviate constraints on half-
maximal coefficients governing Ci/CN regulation of ptc. Left
column of panel E is taken from Fig. 6 to facilitate direct
comparison.

3———————————————————————
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except for the half-life of the intracellular form of
Wg, which we constrained to be low. Finally, rates
governing Wg transport were constrained to be
low. Within this region, the frequency of solutions
is an astounding 4 out of 5 randomly chosen sets.
Thus, Table 1 describes a vast, steep-sided canyon
in the ‘‘epigenetic landscape’’ for the model,
within which the model is almost completely
insensitive to the exact value chosen for any
parameter, and in which mutual constraints
among parameters all but disappear. Most strik-
ingly, the constraints that define this Grand
Canyon are very similar, except for the issue of
ptc regulation (see below), to what we would have
come up with had we guessed from the available
empirical data.

The ci–ptc negative feedback loop

It bothered us that the model should seem to
prefer Ci to be an avid activator of ptc when
empirical evidence suggests the opposite (see
above). Furthermore, we had long been puzzled
by a persistent defect in the time-varying behavior
of the core network: it seems very difficult to
achieve stable patterns of expression for either Ci
protein forms or for ptc. For many parameter sets
that gave stable en, wg, and hh expression
patterns, the Ci protein levels oscillated in time.3

These defects do not prevent the model from
mimicking the patterns of wg, en, and hh, which
are the primary regulators of downstream pro-
cesses like cuticle patterning and neurogenesis.

We noticed that when individual cooperativity
coefficients are held fixed at 1.0 (non-cooperative),
for three parameters the solution frequency
actually increases slightly (see companion paper
by Meir et al., 2002b, this issue). Those three
govern direct links between Ci and ptc. We thus
restricted these three cooperativity coefficients to
vary only between 1.0 and 2.0, thus allowing only
very mild cooperativity in these links, and re-ran
the random sample. We obtained 1,200 solutions
in 126,525 samples (1 in 105), a significant
improvement. In addition, this restriction slightly
ameliorated the bias on repression of ptc by CN
(Fig. 7E). Almost all the solutions found conferred
stable expression patterns on Ci and CN and ptc,
and many exhibited the canonical pattern of Ci
versus CN distribution (high Ci next to Hh-
producing cells, high CN elsewhere) and of ptc
(stripes next to the Hh-producing cells). Although
in the companion paper (Meir et al., 2002b, this
issue) we showed that the global level of coopera-
tivity is positively correlated with robustness of
the model, clearly these results demonstrate that

TABLE1. Canyon in parameter space, inferred from distribution of hits in the standard box1

Parameter Qualitative interpretation Constraint Bounds

kWGen WG activation of en Moderate 0.01^0.1
kCNen CN repression of en Strong 0.002^0.02
kWGwg WG autoactivation Moderate 0.01^0.1
kCIDwg CID activation of wg Weak 0.2^2.0
kCNwg CN repression of wg Strong 0.002^0.02
kCIDptc CID activation of ptc Strong 0.002^0.02
kCNptc CN repression of ptc Weak 0.1^1.0
kENcid EN repression of cid Moderate 0.02^0.2
kPTCCID PTC stimulation of CID cleavage Strong 0.002^0.02
kENhh ENactivation of hh Weak 0.1^1.0
kCNhh CN repression of hh Strong 0.002^0.02
CCID Max. cleavage rate of CID Rapid 0.1^1.0
n (e.g., nCIDptc, nCNptc, nPTCCID) Cooperativity coe⁄cients Steep 5.0^10.0
HIWG Half-life of intracellularWG Short 5.0^30.0min.
rEndoWG Rate of WG endocytosis Slow 0.001^0.01
rExoWG Rate of WG exocytosis Moderately slow 0.005^0.05
rMxferWG Rate of WG cell-to-cell exchange Slow 0.002^0.02

1Within the canyon described by the constraints tabulated below, we obtained 1,017 hits in 1,284 random parameter picks, a hit rate of 4 out of 5 (1 in
1.26), with an average score of 0.060 (substantially better than the standard box average score of 0.077; the best score possible is approximately 0.035,
the cuto¡ above which patterns are rejected is 0.2).

3‘‘Stable’’ versus ‘‘oscillatory’’ is a matter of degree. Nature surely
does not know the difference between a true stable steady state point
and a small-amplitude limit cycle. However, we assume that large-

amplitude oscillations or chaotic behavior are functionally very
different from small limit cycles in many developmental contexts.
Our scoring functions take these considerations into account.
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cooperativity in regulatory interactions does not
in every case foster robustness.

There remained a noticeable bias favoring
strong activation of ptc by full-length Ci. We
show below that the solution frequency increases
when we include initial ubiquitous, moderate
expression of ptc in the prepattern. CN repression
of en is crucial; starting with our standard
initial conditions, ci and en race for control of
the cell state. Perhaps Ci must be a strong
activator of ptc only so as to quickly get itself
converted into a repressor and squelch the spread
of Wg-stimulated en expression. We thus con-
ducted another sampling with the same con-
straints on Ci–ptc-related cooperativity coeffi-
cients and with initial ubiquitous expression of
ptc mRNA and protein in the prepattern, and
found 1,127 in 68,114 solutions (1 in 60). The bias
on both Ci activation of ptc and on CN inhibition
of ptc all but disappeared (Fig. 7E).4

Sensitivity to gene dose

Uncoordinated variations in single parameters
are a good proxy for a subset of likely mutations
that one would expect to afflict real genes. For
instance, a particular mutation might modify a
single nucleotide in the enhancer of some gene
X, allowing it to bind with lowered affinity to some
essential activator Y; this would be analogous to
an increase in the parameter kYx in our modeling
formulation. However, many mutations will likely
lead to predictably coordinated changes in several
parameters at once. A simple way to impose

coordinated changes in the parameters for each
gene is to vary the copy number. We tested what
fraction of solutions succeed as heterozygotes or
with 1, 2, 4, or 6 additional copies of each locus
individually (Table 2). Notably, for the core model
most solutions are almost completely insensitive
to extra copies of ptc, hh, and ci. The model seems
rather more sensitive to heterozygosity for hh and
to dosage variation in either direction for wg and
en. However, this is simply because the goodness-
of-fit function that scores the behavior of the
model (see Supplementary Information for von
Dassow et al., 2000) is moderately sensitive to the
quantitative level of expression of the species it
monitors. We watched the entire test suite for hh
and wg heterozygotes, and observed that most of
the parameter sets that fail do so only because the
reduced gene dose, of course, reduces proportion-
ally the maximal level to which the gene’s
products accumulate. In most cases the wg- or
hh-heterozygous model makes a qualitatively
correct pattern which fails merely because some
of the concentrations are too low to pass the
goodness-of-fit cutoff. For wg heterozygotes,
roughly 75% would have passed had we relaxed
the stringency of the scoring function accordingly;
for hh heterozygotes, all but a few would have
passed.

Nevertheless, we stick with the more stringent
measure, because from the perspective of the
segment polarity network’s downstream targets
the absolute level of segment polarity gene
expression could be important. Even so, many
parameter sets tolerate quite a lot of variation in
gene dose: 61 out of 1,120 solutions tolerated
heterozygosity at all loci, and of those 61, the vast
majority (56) also tolerated an extra copy of every
locus. If these were uncorrelated responses, then
on the basis of Table 2 one would expect only
about 1% of the 1,120 to survive both hetero-
zygosity for and an extra copy of all loci; the fact
that 5% survived suggests that these are an

TABLE 2. Sensitivity of the core network to gene dose1

Locus Heterozygote 1 extra copy 2 extra copies 4 extra copies 6 extra copies

En 628 (56%) 872 (78%) 706 (63%) 516 (46%) 361 (32%)
Ci 678 (60%) 1,027 (92%) 968 (86%) 886 (79%) 841 (75%)
Ptc 901 (80%) 1,104 (99%) 1,101 (98%) 1,098 (98%) 1,091 (97%)
Hh 379 (34%) 1,064 (95%) 1,029 (92%) 964 (86%) 872 (78%)
Wg 339 (30%) 806 (72%) 646 (58%) 449 (40%) 333 (30%)

1The fraction of the 1,120 good parameter sets (same sets in Fig. 6 and the top line of Table 3 in the companion paper by Meir et al. (2002b, this issue)
which also make the right pattern in the presence of di¡erent copy numbers for constituent genes. Percents are given in parentheses.

4This latter observation is unlikely to be relevant to Drosophila
development, because pair-rule gene products persist on the order of
an hour after segment polarity genes first come to be expressed, and
provide a temporary, fading influence that guides the early sorting out
of intrasegmental cell states (Martinez-Arias, ’93). We have explored
how they do so in the context of this model and their influence on
robustness (which is generally positive), but do not report these results
here. It is, however, unknown how the segment polarity genes acquire
their initial patterns in other arthropods. Especially in short-germ
insect embryos, the segment polarity module may not be able to count
on pair-rule genes for guidance.
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especially robust subset. Of those, 12 parameter
sets tolerated all tested gene dose variations. This
shows, on the one hand, that it is possible to find
parameters that make the network robust to 12-
fold variation in the dose of every locus. However,
those 12 sets came from a search of 235,000
random samples, so their frequency is about 1 in
2�104. While this is still a high frequency (see the
hypothetical comparison in von Dassow et al.,
2000, to an engineered circuit), the fact that only a
fraction of solutions tolerate heterozygosity sug-
gests an evolutionary rationale for robustness.
While it is hard to imagine that organisms
experience significant selection to tolerate hetero-
zygosity or extra copies of genes, certain other
phenomena, from the point of view of the gene
network, seem very similar. For example, embryos
differ significantly in volume and can be induced
to differ even more in response to extreme
conditions (our unpublished observations). Cells
probably differ stochastically in the availability of
biosynthetic machinery, or time spent in inter-
phase, or many other factors. Selection for
robustness against such non-heritable variation
would likely render the network robust to genetic
variation that alters gene expression levels.

Summary

In this section we showed that the parameter
space of the core segment polarity model embodies
various constraints on individual parameters,
including trade-offs among several parameters
controlling a particular kinetic process. These
constraints reveal a sub-region of the parameter
space, still vast, in which the model is almost
guaranteed to work. We suggest the visual
metaphor of Grand Canyon, with smaller tribu-
taries (within which the model works, but not as
robustly) snaking in from the surrounding pla-
teaus to join a wide, steep-walled main canal.

Section II: Architectural variants of the
core network model

The core network model lacks certain known
or suspected interactions among its components.
An example is that En is claimed to repress ptc
(Sanicola et al., ’95), although it is not clear
whether this interaction is direct or mediated
through En repression of ci. In addition, since we
could not see why this interaction should be
necessary for the function of the network, we
initially chose to leave it out. Again, our goal is to
reconstitute, not make a complete re-creation a

priori. The core network model also embodies
certain assumptions about the specific nature of
the interactions among its components. For
instance, wg autoregulation is mediated by the
intracellular, rather than the extracellular form
of the Wg protein (this seemingly bizarre choice
was supported by empirical observations reported
by others; see below). We next test the extent to
which these choices affect the performance of the
network. Figure 8 diagrams the core network and
the variants to be explored in this section. Colored
lines indicate additional links; dashed lines in-
dicate alternative choices, and no variant embo-
dies two dashed lines of the same color. Table 3
describes these variants and the results of random
samplings conducted as above.

Repression of patched by Engrailed

Introduction of a link by which En represses
ptc slightly decreased the frequency of solutions.
However, any such addition increases the dimen-
sion of parameter space. Any bias on the distri-
bution of these novel parameters, as for several

Fig. 8. Architectural variants of the core network. The
entire network inhabits each cell; also diagrammed for clarity
are the direct effects of one cell on its neighbor (WG¼wingless,
EN¼engrailed, SLP¼sloppy paired, HH¼hedgehog,
CID¼cubitus interruptus (whole protein), CN¼repressor
fragment of cubitus interruptus, PTC¼patched,
PH¼Patched–Hedgehog complex). Ellipses represent mRNAs;
rectangles, proteins; and hexagons, protein complexes. Arrows
represent positive interactions; round-ended lines, negative
ones. Solid black lines represent interactions that remain in
place in all variants. Colored lines indicate the variants
documented in Table 3. Dashed lines indicate mutually
exclusive choices; no two dashed lines of the same color exist
in any one model.
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of the original parameters, will cause a decrease
in the frequency in the absence of constraints.
Thus the effect of adding the En–ptc link was
unremarkable. We wondered, however, why such a
link might exist. Although in our standard tests
the initial conditions consist only of stripes of wg
and en and the corresponding proteins, in reality
the prepattern confronted by the segment polarity
network in a blastoderm-stage Drosophila embryo
is much more complex. In particular, ptc is
expressed nearly ubiquitously until mid-germ
band extension, disappearing from en-expressing
cells by stage 9, and finally coming to be expressed
only on each side of the en-expressing stripe at
stage 11 (Hooper and Scott, ’89). Indeed, in the
context of initial background levels of ptc, the
En–ptc link increases the solution frequency.
However, even in the absence of the En–ptc
link the frequency of solutions increased when
the initial conditions included a moderate
background level of ptc. We suspect this is
because Ptc promotes conversion of basally ex-
pressed Ci into the repressor, CN, which then
prevents en expression from spreading beyond its
initial stripe.

Potential targets of Cubitus interruptus

The core network includes one link whose
reality is questionable: the repression of en by
CN. We justified this link (von Dassow et al., 2000)
on the basis of two published observations: (1)
antibodies to Ci stain the polytene chromosome
band in which the engrailed gene resides (Aza-
Blanc et al., ’97), and (2) smoothened-dependent
Hh signaling activates en expression just anterior
to the compartment boundary in imaginal discs
(Blair and Ralston, ’97; Strigini and Cohen, ’97)
and abdominal epidermis (Lawrence et al., ’99),
presumably through the known Smo signaling
pathway that terminates in the regulation of Ci
cleavage. Since other known positive targets of
the full-length Ci protein are repressed by the
N-terminal fragment, we felt justified in hypothe-
sizing the CN–en link. Why not then include a
positive link between full-length Ci and en? When
we do so, the frequency of solutions drops. This
merely says that if such a positive link exists, it
must be a weak one, and on the basis of the
narrow stripe of imaginal disc cells in which en is
activated by Hh signaling, this must be the case.
By analogous reasoning, since in our model CN
represses hh, should not Ci activate hh? As with
en, if it does so the model suffers slightly, but only

to the extent that this added interaction must not
be too strong.5

Even if full-length Ci does not actually regulate
either en or hh in the early embryo, then surely
these links are near-neighbors in the space of
possible evolutionary changes, since Ci and CN
have the same DNA binding domain. CN probably
acts as a repressor by competing with full-length Ci
for binding to consensus sites, and thus ought to be
a local repressor of transcription. However, in the
context of our model we had to assume that CN is a
global repressor of en and hh. CN could accomplish
this if some factor recruited by full-length Ci (CBP
perhaps?) is required for transcription of these
targets. We tried several different ways of hooking
up these links, including models in which CN is a
global repressor of both en and hh, or of one or the
other, or of neither. Table 3 includes the results
from several of these, and shows that these choices
can be very important to the performance of the
model; if indeed these links are easy to establish,
then the network is in a dangerous evolutionary
neighborhood with respect to this part of the circuit.

Wingless transport

In our core model we chose to make en sensitive
to the concentration of Wg on apposite cell
surfaces; that is, cells respond to Wg protein
presented to them by their neighbors. We tested
whether it makes any difference to the model if Wg
must first become associated with the responding
cell’s surface (Table 3). The modest penalty shown
in Table 3 (line 11 versus top line) likely results
from the fact that in order for this transfer to take
place the Wg diffusion rate, which the model
prefers to be slow, must be sufficient to get the
protein from the cell in which it is synthesized to
the cell in which it is sensed. This result under-
scores the suggestion that control of Wg traffic is
likely to be a critical parameter for optimizing the
most basic functions of the segment polarity
network. We next tested whether it makes any
difference (to the model) whether wg autoregula-
tion is mediated by intracellular or extracellular
Wg protein. As shown in Table 3, line 13, the
frequency is lower for a model in which extra-
cellular Wg stimulates wg transcription.

5It should be noted first that we are aware of no evidence for positive
regulation of hh by Ci. Indeed, the only evidence available is that some
product of ci must repress hh (Dominguez et al., ’96), and we merely
assumed it is the N-terminal fragment. Full-length Ci binds to (and
requires) the co-activator CBP to activate its targets (Akimaru et al.,
97; Chen et al., 2000). In some contexts CBP behaves as a co-repressor
(Waltzer and Bienz, ’98), so it is possible that full-length Ci is
responsible for hh (and even conceivably en) repression.
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Our choice of intracellular Wg for this role is
supported by the analysis of certain wg alleles in
which abundant Wg protein remains localized to
the cell in which it is synthesized. These alleles
block maintenance of en expression by Wg, but not
wg autoregulation (Dierick and Bejsovec, ’98).
However, Hooper (’94) showed that the wg
autoregulation mechanism is able to spread from
cell to cell in the segment, and Manoukian et al.
(’95) showed that porcupine, a membrane protein
involved in Wg glycosylation and secretion (Tana-
ka et al., 2002), is required for wg autoregulation.
The observations of Hooper and Manoukian might
be reconciled with those of Dierick and Bejsovec by
assuming that Wg moves among cells by transcy-
tosis. Our model shows these hypotheses are
dynamically plausible, but clearly we need more
detailed experimental information on Wg trans-
port and the autoregulatory pathway.

Sloppy–paired as a candidate
intermediate for wingless autoregulation

We considered two candidates for intermediate
steps in wg autoregulation. First, several pieces of
suggestive evidence implicate the protein kinase
encoded by fused in this process (Hooper, ’94;
Therond et al., ’99). The Fu kinase phosphorylates
Ci, and perhaps this phosphorylation could hyper-
activate Ci (Ohlmeyer and Kalderon, ’98); if in
addition Fu activity is somehow stimulated by Wg
signaling, this could account for wg autoregula-
tion. So far, however, we have failed to incorporate
a complete, self-consistent set of hypotheses about
how the action of fused and other components of
the Hh signal transduction pathway could mediate
wg autoregulation.

A better candidate is the transcription factor
encoded by sloppy-paired. Slp activates wg and
represses en (Cadigan et al., 1994a,b). In addition,
recent reports suggest that slp is itself activated by
Wg signaling and repressed by En (Kobayashi
et al., ’98; Bhat et al., 2000; Lee and Frasch, 2000).
slp is expressed in the Wg-producing cells and
their immediate neighbors to the anterior and
therefore is an excellent candidate for an inter-
mediate in wg autoregulation (see Fig. 8),
although from published reports it is not clear
for how long slp is expressed in embryogenesis. As
shown in Table 3, models in which wg is
autocatalytic only via slp perform admirably.

We noticed while watching the random sam-
pling process work over models using slp to
mediate wg autoregulation that many parameter

sets failed because Wg expression declined before
slp expression ramped up. slp is actually expressed
substantially earlier than the other segment
polarity genes (Grossniklaus et al., ’92). When
we include an initial stripe of slp mRNA and
protein in the prepattern (an entirely legitimate
element in flies but unknown for other insects) the
hit rate improves for obvious reasons. The initial
slp stripe also made the model less sensitive to
certain details, such as which compartmental form
of Wg activates en. This is because the initial slp
stripe keeps en from invading the wg row.6

Summary

The robustness of the segment polarity model is
not due to particular ad hoc wiring choices.
Rather, our attempt at a reconstitution resulted
in a robust core topology, and that core model is
robust not only to variation in parameters and
initial conditions (von Dassow et al., 2000) but also
to variation in the architecture of the network, so
long as the architectural variants use realistic
connections. We have tested numerous realistic
possibilities that can be addressed within the
context of the simple model of the core segment
polarity network, and with respect to its basic
boundary-maintaining function. Most of the var-
iants we tested have only subtle impacts on the
performance of the model, but Table 3 shows that
clearly one can introduce connections that impose
major constraints. Before leaving the simple
model, we emphasize that the map in Figure 8
encompasses facts known with varying degrees of
confidence. In the process of concocting a model of
any biological process, gene network behavior in
this case, one confronts unknowns in which some
decision must be made in the absence of adequate
evidence. The modeling approach used here and
described in the companion paper (Meir et al.,
2002b, this issue), which relies on a stereotyped
set of building blocks to express gene regulatory
interactions, allows us to rapidly test the plausi-
bility and mutual consistency of hypothetical
mechanisms and quickly compare models embody-
ing different choices.

Section III: Maps at lower and higher
resolution

The segment polarity model seeks to express in
mathematics certain kinetic processes described

6See the companion paper by Meir et al. (2002b, this issue) for
demonstration that, under relatively tightly specified conditions, a
sub-network consisting of just slp, wg, and en can do the same job as
the whole network, but not robustly.
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by biologists. To what extent do the results depend
on the level of detail incorporated in the model?
Overly simplistic models fail to incorporate me-
chanistic constraints that Nature faces. For
example, the core segment polarity model ex-
presses mathematically the English statement
‘‘Wingless activates engrailed transcription’’, but
Nature has to design a signaling pathway by which
it does so, and the chosen design may have
important consequences to the robustness of the
mechanism as a whole. On the other hand, too
complex a model becomes useless as an explana-
tory tool. In this section we compare models of
lesser or greater complexity.

Simpler versions

First, we tested a simplified model that is
topologically identical to the core network but
collapses the mRNA and protein products of every
locus into a single entity. The collapsed model has
slightly fewer parameters but, again, exactly the
same topology. We found that it is quite capable of
making the desired pattern, but solutions are five
times less frequent: the hit rate in a random
sample was roughly 1 in 1,000. Furthermore,
somewhat contrary to our naı̈ve expectations, the
collapsed model is computationally less tractable:
it takes about an order of magnitude more
computer effort per parameter set to integrate
the collapsed model in searches equivalent to
those performed with the core model.

Both the lowered solution frequency and the
increased stiffness of the equations are due to the
fact that the collapsed model is much more prone
to large-amplitude temporal oscillations than is
the core model. Collapsing the mRNA and protein
into a single species eliminates a major source of
kinetic delays (e.g., when an mRNA declines
temporarily, the protein declines a little later).
While delays are generally thought of as a source
of oscillations, in this case the existence of an
intermediate step between stimulus (input into a
gene’s enhancer region) and response (accumula-
tion of the protein product to equilibrium level)
tends to damp out oscillations. The desired
behavior for the segment polarity model is based
on positively reinforcing but mutually exclusive
stable cell states. A balance of positive feedback
and negative crosstalk promotes this behavior.
The model includes at least one prominent
negative feedback loop (between Ptc and Ci) that
tends to generate oscillations. Whether or not
these oscillations propagate to the positive feed-

back loops that stabilize cell states depends both
on the relative time scale with which each
component responds and also on how well non-
linear thresholds buffer each component from
oscillations in input stimuli. In the core model,
all transcriptional responses involve ramping up
or down the level of two different species which
could have very different half-lives. Since the half-
lives determine how long it takes each species to
reach equilibrium, the response to an oscillatory
input is damped by the slowest-equilibrating step
in the chain. In contrast, in the collapsed model,
there are half as many opportunities to damp
oscillations, and thus a much greater fraction of
the parameter space succumbs to oscillations that
probably originate in the Ci/Ptc negative feedback
loop. It is not yet clear to us whether this finding
is specific to this particular network, but it is
possible that gene networks are ‘‘designed’’ to
exploit dynamical rules like these to stabilize gene
expression levels.

Second, we attempted to concoct a different and
much simpler ‘‘engineered’’ model that would
accomplish the same task of stabilizing two
different cell states right next to one another.
After many failures, we accomplished this using
two loci encoding diffusible proteins, each of which
somehow activates itself, suppresses the other,
and hetero-dimerizes with the other to form a
substance that activates expression of both genes
(Fig. 9A). This toy model can work but is far less
robust to parameter variation than is the segment
polarity network model (Fig. 9B). With 27 free
parameters, the solution frequency was on the
order of o1 in 104 (n¼29 hits). If the kinetics of
the two loci’s products are constrained to be
symmetric (e.g., if A and B have identical half-
lives, diffusion coefficients, avidity for targets,
etc.), then the solution frequency becomes more
amenable (1 in E150, n¼646 hits, 16 free
parameters), but this is a very stringent con-
straint! If the mRNAs and proteins are collapsed
into single nodes as above, this design breaks
down completely; there must exist some scarce
solution somewhere in the parameter space of the
collapsed version, but we have not yet discovered
its hiding place, even with hand tuning.7 Perhaps
we are just poor engineers, and some other elegant

7The reason is essentially the same as in the collapsed model of the
segment polarity network: cut out the intermediate steps, and the
model becomes much more susceptible to oscillations driven by
negative feedback. Thus our experience with the engineered toy
substantiates our explanation for the segment polarity network, and
hints at the possibility of a general rule for designing robust genetic
mechanisms.
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device might do better. However, it is not the case
that the network in Figure 9A represents an
intrinsically poor design; we managed, indeed, to
build it up until it became quite robust, at which
point it had concomitantly grown almost as
complex as the core segment polarity network
(not shown).

A third simplification is discussed in the
companion paper by Meir et al. (2002b, this issue).
We found that a sub-network consisting of wg, en,
and slp is capable of accomplishing the same

boundary-maintenance task as the core segment
polarity network, but it is not nearly as robust to
initial conditions or to parameter variation. Thus
the core segment polarity model is not, as we
originally reported (von Dassow et al., 2000), the
simplest realistic topology capable of accomplish-
ing this task; rather, adding another component,
slp, allows one to break the network into two
pieces, one of which can do the basic task required,
but which becomes more robust when coupled to
the other sub-network.

Incorporating a signal transduction
pathway for Wg

The core model omits the dynamics of the signal
transduction pathway between Wg and en. A brief
summary of the real pathway would begin with
secretion of Wg from cells that synthesize it. Once
secreted, Wg interacts with a number of cell
surface proteins, including receptors in the
Frizzled family (Bhanot et al., ’96, ’99; Bhat, ’98;
Sato et al., ’99; Sivasankaran et al., 2000), the
transmembrane receptor Notch (Wesley, ’99), and
heparan sulfate proteoglycans (Hacker et al., ’97;
Lin and Perrimon, ’99; Tsuda et al., ’99). We are
not aware of any role for Notch in segment
boundary maintenance in the early embryo.
Heparan sulfate proteoglycans may restrict Wg
traffic across the parasegment boundary, but this
role may or may not affect segment boundary
maintenance. The products of three related genes,
frizzled (fz), Dfrizzled2 (Dfz2), and Dfrizzled3
(Dfz3) are the receptors involved in en regulation
by Wg. fz was originally discovered as a tissue
polarity gene (Vinson et al., ’89), and it seemingly
retains a sociological association with that func-
tion. Dfz3 exhibits little signaling activity and may
serve primarily as an attenuator of Wg signaling
(Sato et al., ’99). Thus Dfz2 assumes the mantle of
‘‘the Wingless receptor.’’ Nevertheless all three
are expressed in early fly embryos, and at least
fz and Dfz2 can substitute for one another during
segmentation (Bhanot et al., ’99; Chen and Struhl,
’99). Hereafter, for simplicity, we use ‘‘Fz’’ to refer
to all frizzled-family Wg receptors simultaneously.

Wg binding to Fz somehow causes the product of
disheveled to suppress activity of the kinase GSK3,
encoded by shaggy. GSK3 phosphorylates several
proteins, among them the product of armadillo
(arm, the Drosophila homolog of b-catenin),
Daxin, and a Drosophila homologue of APC
(reviewed by Cadigan and Nusse, ’97). These three
proteins form a complex which targets Arm for

Fig. 9. Simple network that does a similar task to the
segment polarity network. (A) Topology of the concocted
network; A and B are secreted proteins that promote their
own expression but repress each other; they dimerize to
produce a diffusible complex which functions as an activator of
both loci. (B) Wheel plot of parameter sets that succeed in
holding a boundary with an A-expressing cell state to the
anterior and a B-expressing cell state to the posterior. Clearly
there are sharp biases on certain parameters. Not apparent is
the strong preference for A and B to be symmetric, i.e., to be
governed by nearly identical values for every parameter (see
main text).
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ubiquitin-dependent degradation involving the
product of the gene supernumerary limbs (Jiang
and Struhl, ’98). Thus Wg signaling somehow
suppresses GSK3 activity, reducing Arm’s affinity
for Daxin and APC, allowing Arm to accumulate in
the cell. Arm also binds to the Drosophila
homologue of TCF, encoded by pangolin (pan).
Arm and Pan enter the nucleus and act together
as a transcriptional activator of Wg target genes,
including en (Brunner et al., ’97; van de Wetering
et al., ’97). In the absence of sufficient Arm, Pan
may bind to the transcriptional corepressor en-
coded by groucho (Cavallo et al., ’98); thus Pan
may constitute a transcription switch by binding
alternately to different partners, much as Ci
achieves through its cleavage.

In the model ‘‘spg2’’ (depicted in Fig. 10), the
rates at which cleavage destroys Arm varies with
the occupancy of Fz by Wg, Arm binds to
constitutively produced Pan, and the complex
activates en. There is also strong evidence that
Wg signaling results in the repression of Dfz2
transcription, both in the wing imaginal disc and
during segmentation, probably via Arm and Pan
(Cadigan et al., ’98). Variants of spg2 included
several combinations of choices (Fig. 10; Table 4),
which, at the time we composed the model, could
not be conclusively differentiated on the basis of
empirical observations. Our interpretation of the
literature tentatively leans us toward spg2 Variant
E or G as the most realistic. We report the results
from a handful of other variants to show (Table 4)
that none of these details makes more than a
modest difference in the solution frequency,
although in the model if Pan represses en it must
not do so too avidly. It is worth noting that
constraints manifest in spg1, on whether Wg is
presented to cells or must become associated with
them in order to act, are abolished with the

incorporation of even such a simple representation
of the Wg signal transduction pathway: variants E
and F are identical to B and C except for this
detail. However, most startling is the fact that it is
unexpectedly easier to find solutions for spg2 than
for the original model, spg1. Whereas the fre-
quency for spg1 and its variants tends to be
around 1 in 200 or somewhat worse, the frequency
for spg2 is E1 in 100, despite the greater
complexity of the latter model (7572 parameters,
depending on the variant, versus around 50 for
spg1, 8 loci versus five loci, and 21 species versus
13 species).

Fig. 10. Topology of spg2. Same diagram conventions as in
Fig. 8, and again no two dashed lines of the same color exist in
any one model (WG¼wingless, FZ¼frizzled, FW¼Frizzled-
Wingless complex, ARM¼armadillo, PAN¼pangolin, EN
¼engrailed, SLP¼sloppy paired, HH¼hedgehog, CID¼cubitus
ubitus interruptus (whole protein), CN¼repressor fragment of
cubitus interruptus, PTC¼patched, PH¼Patched–Hedgehog
complex). Ground symbol represents constitutive destruction
of Arm at a rate regulated by Fz occupancy.

TABLE 4. Solution frequency for spg2 variants

Variant Distinguishing feature No. of hits No. of samples Hit rate

A Pan and Arm^Pan compete to regulate fz, Arm cleavage stimulated by free Fz 912 98,628 1 in 108
B Same as A but Arm cleavage inhibited byWg-bound Fz 1,165 129,845 1 in 111
C Same as A but fz depends on Pan only 925 100,827 1 in 109
D Same as B but fz depends on Pan only 1,217 124,961 1 in 103
E Same as B butWg binds to Fz on the same cell surface rather than opposite

surfaces
1,265 130,713 1 in 103

F Same as E but fz depends on Pan only 1,214 129,370 1 in 107
G Same as E but Pan represses en 475 139,411 1 in 293
H Same as F but Pan represses en 501 133,721 1 in 267

1Searches within a parameter space box as in Figure 6 (see also the Supplement to von Dassow et al., 2000) but with all cooperatively coe⁄cients
ranging between 1.0 and 10.0.Variants are diagrammed in Figure 10.
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Clearly we require a metric by which to compare
models with different numbers of parameters. A
priori we expect the ease of finding solutions to go
down as the parameter count rises. As complexity
increases, the null hypothesis is that the more
things there are to break the more likely one will
fail. The null hypothesis should hold if the greater
complexity comes about by intercalating features
that do not inherently synergize to make each
other less likely to fail, that is, if the added
components are just links in a chain. Since the
differences between the models spg1 and spg2
consist essentially of components added in series,
we expected the null hypothesis to be validated,
which would predict a lower frequency of solutions
according to the chain of reasoning that follows.

The frequency is roughly the product of the
probabilities that the dice throw yields a ‘‘good’’
value for each parameter (it is a little more subtle
if parameters are correlated). For the original
model with 48 free parameters and no restrictions
on cooperativity (see companion paper by Meir
et al., 2002, this issue), a hit rate of 1 in 250
corresponds to an average probability of about
89% per parameter of landing on a good value
(48th root of 1/250 E0.89). For spg2 with 75 or so
parameters, a hit rate of 1 in 100 corresponds to
an average probability of 94%. This does not seem
an impressive difference until one works it out the
other way around: if the average per parameter
probability of a good pick were to remain constant
at 89% when going from spg1 to spg2, then the hit
rate for the variants of spg2 should be near 0.89 to
the 73rd to 77th power, or 1 in 4,000–8,000,
depending on the variant. This makes the differ-
ence between spg1 and spg2 look more dramatic.
In the future we hope to devise better measures of
robustness, but to date we have not been able to do
so without a large investment of computation. For
example, we have developed two functional mea-
surements (Meir et al., 2002a): one in which we
assess how much ‘‘mutation’’ the model can
tolerate, and another that involves assessing the
success rate of recombinants between working
parameter sets. However, these methods require a
great deal of computational trials and often
correlate with the conclusions of the ‘‘nth root’’
formula described above, so for this paper we stick
with that measure.8

In contrast, the simplified version of spg1 in
which mRNA and protein were collapsed together
(42 free parameters) should have exhibited a
solution frequency of 0.89 to the 43rd power, or
1 in 150, had it been equivalent to spg1; instead it
yielded only about 1 in 1,000. If our engineered
two-locus model were as robust as the core
segment polarity model, we might expect 1 in 25,
not o1 in 104, or 1 in 6 for the version with strict
symmetry constraints instead of 1 in 150. For the
architectural variants of the core model, it turns
out that in most cases the decrease in solution
frequency is nearly commensurate with the slight
increase in parameter number, although some
links (like the introduction of slp) appear to confer
a real positive advantage on robustness; that is,
those few in the latter group, as well as the
increased detail represented in spg2, represent
genuine improvements in the design of the net-
work.

Toward more complete networks

The core network model incorporates only a
trivial representation of wg autoregulation. As we
noted above, there is as yet too little information
about this process for us to do much better, but slp
seems an excellent candidate for an intermediate
transcriptional regulator. slp has the additional
and very interesting property that it engages in
both a positive feedback loop with wg and a
negative feedback loop with en (see discussion
above in the context of spg1). Another possibility
is gooseberry, which appears to be a target of Hh
signaling through Ci (Bhat, ’96; Von Ohlen et al.,
’97) and also a target of Wg, and which positively
regulates wg during mid- to late embryogenesis
(Li et al., ’93; Li and Noll, ’93). However gsb is
known not to be required for early wg autoregula-
tion (Hooper, ’94). It is not clear at the present
writing whether slp is stably expressed through-
out embryogenesis; published reports end with
mid-embryogenesis and we can’t detect strong
segmental expression beyond approximately stage
12 (V. Rich and G von Dassow, unpublished), but
slp is expressed in the appropriate region in at
least some segments in the adult (Struhl et al.,
’97). It could be that gsb takes over wg auto-
regulation during mid-embryogenesis. Clearly
there remain significant empirical questions
about how wg autoregulation evolves throughout8The ‘‘nth root’’ metric will deceive greatly when the parameter

space encompasses many distinct basins of ‘‘working territory’’. In
such a case, where there are in effect many qualitatively distinct
kinetic ‘‘recipes’’ for solving the problem, the mutational or recombi-
national methods will provide a much more accurate measure of the
robustness of the network because they tell us how robust is a given

recipe. For all variants of the segment polarity network, it appears
there is a single major solution basin in parameter space, albeit that
basin is fed by many rivulets and side canyons and wash-gullies. Thus
for this network the ‘‘nth root’’ seems adequate.
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embryogenesis, questions which need to be re-
solved before we can confidently incorporate any
credible solution in a model.

In the core network we modeled Ptc as a direct
modulator of Ci cleavage, which it is not. In reality
Ptc is a stoichiometric inhibitor of the transmem-
brane protein encoded by smoothened (Alcedo
et al., ’96; Alcedo and Noll, ’97; Chen and Struhl,
’98). In the absence of Ptc, Smo transduces a
constitutive signal that stabilizes Ci by regulating
its association in a complex with several other
proteins including the Fu protein kinase, the
product of Suppressor of fused, and the kinesin-
like protein encoded by costal-2 (Robbins et al.,
’97; Sisson et al., ’97). This complex both prevents
full-length Ci (but not CN) from entering the
nucleus and also directs Ci to proteolysis which
converts it to CN. Ptc binding to Smo prevents
Smo from signaling; Hh binding to Ptc prevents
Ptc from binding Smo; thus, Hh titrates away
Ptc, allowing Smo to send its signal, resulting
in the accumulation of full-length Ci. Protein
Kinase A also regulates Ci: phosphorylation by
PKA may modulate Ci binding to Fu, Su(fu), and
Cos2, may modulate Ci cleavability, and may
influence the ability of Ci to enter the nucleus
and activate its targets (Chen et al., ’98; Wang
and Holmgren, ’99). Unfortunately, it is not
apparent yet whether or how Hh (or anything
else during segmentation) might influence PKA;
the current suggestion places Smo and PKA on
parallel pathways.

As steps toward a more realistic framework for
further exploring the segment polarity architec-
ture we tested the models ‘‘spg3’’ and ‘‘spg4,’’
extensions of spg2 which we do not discuss in
detail here. Spg3 attempted to account for wg
auto-regulation via Fused and Ci instead of
through slp, and was unsuccessful. Spg4 incorpo-
rates smo and drops the assumption of irreversible
hetero-dimerizations; all complexes are allowed to
dissociate. Spg4d, the variant most comparable to
the original model, is governed by 84 free para-
meters. In 40,326 random samples we found 386
solutions (1 in 104). The null hypothesis would
have predicted roughly 1 in 20,000 if the greater
complexity of spg4 compared to spg1 did nothing
specific to improve the outcome.

Summary

Figure 11 shows graphically how the various
models compare; to summarize, whereas a null
hypothesis would predict that increasing the level

of detail in the model would make it harder to find
working parameter sets in a random search, in
fact, for this network, adding known details makes
it easier to find solutions in parameter space, with
respect to the boundary-maintenance task that we
consider to be the fundamental biological role of
the segment polarity network. However, spg4
(and more complex versions not discussed
here) begins to show signs of a certain complexity
burden. In a way, in spg4 the various cell states
that make up the desired pattern are too stable.
It seems that spg4 embodies, in effect, many
different kinetic mechanisms for stabilizing
the target pattern, all of which overlap in para-
meter space. On the one hand, this makes this
network even more robust than simpler approx-
imations, but on the other hand, it also means

Fig. 11. Fragility of segment polarity network models as a
function of complexity. Plotted here is the natural log of 1 over
the solution frequency for several models, versus the number
of free parameters in each model. The quantity on the vertical
axis gives a rough answer to the question, ‘‘how hard is it to
find parameter sets that make the model work?’’ The stippled
line represents the null hypothesis, discussed in the main text.
The solid line plots the actual results for segment polarity
models that incorporate a progressively greater level of
intermediate detail, as reflected in the parameter count. Also
included is the engineered network (described in Fig. 9) which
is the most fragile of all, despite its simplicity.
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it is a much less dynamic network. Cell states in
spg4 appear to be so much more self-reinforcing
than in spg1 that it is very difficult to perturb the
model once it locks in on a particular spatial
pattern of cell states.

Section IV: Stripe sharpening,
a dynamic function

Segment polarity genes are expressed in dy-
namic patterns. For example, stripes of expression
of both wg and en are widely reported to narrow as
the germ band extends in the 3.5- to 5.0-hr old
Drosophila embryo. Also, in the early Drosophila
embryo cephalic segments differ from the trunk
segments in the detailed patterns of segment
polarity gene expression and in their mutual
dependencies (Gallitano-Mendel and Finkelstein,
’97); even between dorsal, lateral, and ventral
regions of the trunk segments there may be major
differences, since wg expression only persists
beyond germ-band extension in the ventral neuro-
genic ectoderm. In this section we challenge the
model to mimic the reported narrowing of
wg- and en-expressing stripes during germ-band
extension.

Sharpening the wingless stripe

All models described above failed to account for
how the stripe of wg expression sharpens during
germ band extension. As the germ band extends,
cell rearrangement causes each segment to expand

along the anterior–posterior axis from 4 cells wide
to roughly 8 cells wide; by stage 12 each segment,
after the combined effects of cell division, rear-
rangement, and neuroblast ingression, is about 12
cells wide in the epidermal layer. Throughout, the
wg stripe remains only one cell wide. Thus, cells
that once expressed wg must turn it off as they
move too far from the influence of Hh-producing
cells. None of our models could account for how
wg, once activated, could turn off, since wg
autoregulation plays such an important role in
the most fundamental behavior of the network. In
all the models described so far, Wg autoregulatory
and Ci/CN pathways effect wg expression addi-
tively. That is, to be conservative we assumed that
these pathways were completely different and had
no positive or negative influence on each other.
Hooper (’94) interpreted some of her results to
mean that these pathway synergize, but did not
specifically distinguish between additive and sy-
nergistic models, so in the absence of a molecular
mechanism for wg autoregulation we stuck with
an additive model as the simplest possibility.

Analysis of nullclines in Figure 12 shows the
problem. Figure 12A and B show generic equa-
tions for a self-activating gene product and the
nullclines for those equations, respectively. For wg
autoregulation to provide the asymmetry for
which it was introduced to the model (von Dassow
et al., 2000), the differential equations governing
wg products must, in the absence of any other
factors, have two stable steady states: wg off and
wg on, corresponding to the lower- and uppermost

Fig. 12. Simple equations and nullclines for an autoregu-
latory gene. (A) Boilerplate equations in which the product of
gene x activates further x mRNA synthesis according to a
sigmoid dose–response curve. X protein is translated accord-
ing to a simple unregulated formula. Both species exhibit first-
order decay. (B) Nullclines for the system of equations in
panel A. Nullclines are made by setting the derivatives to zero
and plotting the formula when solved for x mRNA (black line)
as a function of X protein, or X protein as a function of x
mRNA (dashed line). Where the nullclines cross, both
derivatives are zero and the system is at steady state. Analysis
of eigenvalues of the Jacobian matrix determines whether the
steady state is stable, and it is a trivial matter to show that, in
panel B, the ‘‘off’’ state is stable and the ‘‘on’’ state is stable.
The state in between is unstable and lies along the line (called
a ‘‘separatrix’’) dividing the basins of attraction for the two
stable steady states. Above the separatrix, the system will
evolve inevitably unless perturbed across the separatrix to the
‘‘on’’ state, below it to the ‘‘off’’ state. The position of the
second crossing-point along the X nullcline is an easy gauge
for the ‘‘switching threshold.’’ Such a system is bistable. (C)

Effect of varying the half-maximal coefficient. Such an effect,
an increase in kXx, might be accomplished by some synergistic
transcriptional coactivator that participates by binding to X
and altering its conformation to improve its affinity for
binding sites in the x enhancer. (D) Effect on the system in
panel A of varying the top line. Such an effect might be
achieved by a cofactor that regulates the ability of X to recruit
transcriptional machinery to the promoter. In C and D the
‘‘off’’ state is always preserved. In contrast, an additively
autoregulating gene is probably very hard to turn off once it
gets turned on. (E) Simple additive model of an autoregula-
tory enhancer region in which both X and Y contribute,
independently, to transcriptional activation of x. See Appen-
dix A to the companion paper by Meir et al. (2002b, this issue)
for a comparison with other formulas. (F) Nullclines for a
system involving the equation for the derivative of x mRNA in
panel E, and the equation for X protein in panel A,
showing the effect of varying the concentration of Y given the
parameters shown. Only in a narrow window, and only for
carefully chosen parameter values, is the whole system ever
bistable, and even then the ‘‘off’’ state is not completely off.

3———————————————————————————————————————————————
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crossings in Figure 12B. The middle crossing is an
unstable steady state that lies on the line separat-
ing basins of attraction for the two stable steady
states. This picture is the basis for the absolute
requirement that the response of wg to Wg
signaling must be cooperative (see companion
paper by Meir et al., 2002b, this issue). If Ci acts
additively, it can only shift upward the baseline on
the solid curve in Figure 12F, eventually destabi-
lizing the ‘‘off’’ state completely. Considering the
formula in Figure 12A, there are several other
possible ways that Ci/CN could interact with Wg
(see Fig. A4 in Appendix A to the companion paper
by Meir et al., 2002b, this issue): Ci could

synergize with Wg either by shifting up the top
line (Fig. 12C), or by shifting left the inflection
point (Fig. 12D).

In order for the boundary to be asymmetric,
whatever happens in the presence of high Wg on
the anterior side of the compartment boundary
must not happen on the posterior of the en-
expressing row (where Ci is also elevated) in the
initial absence of high Wg. That is fine as long as
Wg can sustain itself by autoregulation. However,
this condition prevents stripe sharpening for an
additive model, and furthermore it may be wrong:
in fly embryos Ci is absolutely required for wg
expression although by itself it is only able to
weakly activate wg (Hooper, ’94). In the models
presented so far, this is not so; Ci is usually only
required in the models (and not even in every
case) to keep wg on during an initial period.
Indeed, given the additive model it is difficult to
find parameters such that Ci would be required for
wg expression and yet not be able to activate wg
posteriorly (especially if Wg diffuses at all), hence
the preference that Ci be a poor activator and CN
a good inhibitor of wg (Fig. 6).

The reason this poisons stripe sharpening is
that, if Wg is a good activator of itself, as cells
move away from the Hh-producing region they
will experience no deficit if CN only acts as a
competitive antagonist of full-length Ci. Thus,
with a purely additive model of the wg enhancer
region, once wg turns on it stays on no matter
what in all but a narrow crevice of parameter
space. That crevice, part of which is illustrated in
Figure 12F, requires exquisitely fine tuning. CN
cannot turn off wg unless Wg is just barely too
weak to keep itself on in the absence of an assist
from Ci. Even if it is possible, we could never have
found it in a random search: the right conditions
are exquisitely sensitive to half a dozen or more
parameters.

These problems evaporate if Ci and Wg syner-
gistically activate wg. Many synergistic mechan-
isms are plausible: Wg could promote its own
expression, for example, by stimulating Ci to
become a better activator of wg; alternatively,
Wg signaling could result in the expression
or activation of some other factor such as Slp;
Slp could synergize with Ci at the level of
enhancer binding, or transcriptional activation of
wg could require some collaboration between
several proteins recruited by various indepen-
dently binding transcription factors. We tested a
version of spg1 using a simple synergistic formula
for the regulation of wg transcription. In a search

Fig. 13. Synergistic model allows wg stripes to narrow. (A)
Initial state for stripe-sharpening test. This pattern is a
stereotype of what each segment might look like immediately
after germ band extension: cell rearrangements make the
segment almost twice as wide along the anterior–posterior
axis, causing en-expressing cells and wg-expressing cells to
move away from the parasegmental boundary either poster-
iorly or anteriorly, respectively. Starting with this initial
pattern we test whether parameter sets that succeed at the
standard boundary-maintenance task enable the model to
turn off wg or en expression in cells that ‘‘no longer’’ abut the
parasegment boundary directly. Not shown, but also included
in the test pattern, are Wg, En, and Hh levels corresponding to
the mRNA concentrations shown here, and also modest levels
of ptc mRNA and protein in cells 1, 2, 5, and 6, numbered from
the left. (B–E) Four out of 21 parameter sets we found (see
text) that enable wg stripe sharpening. Some parameter sets
allow both the wg and en stripes to sharpen (as in B and C).
Some parameter sets (as in C) only enable the model to
reduce, but not completely eliminate, wg expression in cells
not immediately adjacent to Hh-producing cells. Most of the
successful sets accomplish wg sharpening by achieving a
quasi-stable difference in the relative abundance of full-length
Ci (CID) and the N-terminal repressor (CN), as in B–D. A few,
however, do not: in E, the steady-state pattern of Ci and CN is
uniform in all non-en-expressing cells, but the wg stripe
sharpens because, during the initial transients, Ci accumu-
lates too slowly in the distal cells to ‘‘save’’ wg expression.
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of 163,875 random parameter sets, we found 276
parameter sets for which the model meets the
standard test of holding the boundary; for 21 of
those parameter sets, the model was able to
effect the narrowing of a two-cell-wide wg stripe
to only one cell wide. That is, under these 21
parameter sets, when challenged with an initial
prepattern intended to stereotype the state of
gene expression just at the end of the fast phase of
germ-band extension (see Fig. 13), the model
completely shut down wg in the row of cells 1 cell
diameter away from the Hh-producing cells,
leaving only a one-cell-wide wg stripe. This is not
a remarkable showing; it corresponds to only E1
in 104. However, this was a very crude test, and we
expect that as details of the wg autoregulation
mechanism emerge, we will be able to improve the
model’s performance on this test.

For many of the results described in the first
three sections of this chapter we have tested
whether our conclusions depend on the choice
of an additive or a synergistic model, and they
do not. It is a matter for empirical investiga-
tion whether Wg and Ci synergize, and how. There
are various reasons to favor an additive model.
In particular, Ci drives transcription from the
wg enhancer in cultured cells, presumably in
the absence of whatever factors are involved
in wg autoregulation (Von Ohlen et al., ’97). In
embryos in which Wg signaling is prevented,
low levels of wg are expressed, presumably under
the control of Ci (Hooper, ’94). From Figure 12C
and D it is evident that a simple synergistic
model could not account for this. On the other
hand, in embryos the fact that wg expression
is absolutely dependent on Ci suggests a synergis-
tic mechanism of some sort. Our model shows
that there are major functional consequences for
this choice, at least with respect to stripe sharpen-
ing, and that if Ci and Wg do not synergize
then something big is likely to be missing from
the model. A possibility, if Ci and Wg do not
synergize but instead act additively, is that Wg
signaling may become highly localized to the
compartment boundary vicinity through local
expression or biased intracellular localization of
co-receptors and other proteins required for Wg
signal transduction.

Sharpening the engrailed stripe

Based on an elegant cell-marking study, Vincent
and O’Farrell (’92) showed that cells lose en
expression as they move away from the paraseg-

ment boundary during germ-band extension.
Vincent and Lawrence (’94) showed that this is
because the Wg signal travels only over a very
short range, as little as 1 cell diameter. The core
network (spg1) had little difficulty with the task of
sharpening the en stripe in the same tests
described above. As many as one-third of the
solutions for spg1-grade models were capable of
sharpening the en stripe from two cells to one cell
wide. To our dismay, we found that more complex
models (spg2 and spg4 and others) have a much
harder time with this test. We watched spg4d run
with hundreds of different solutions, only one of
which enabled this model to sharpen a 2-cell-wide
en stripe to one cell wide. It was very rare for the
model to achieve uneven distributions of Pan
versus the Arm–Pan complex. In fact, despite
localized Wg production, only a minority of
solutions enabled the model to achieve spatially
varying distributions of the Fz–Wg complex;
without spatially varying Fz occupancy, no spatial
variation in Arm cleavage will arise, and no spatial
regime of Pan versus Arm–Pan complex levels is
possible. How, then, is en expression confined to a
stripe at all in spg4, never mind how it sharpens?

Consider the interactions of Wg and Fz and Arm
and Pan: they bind to each other stoichiometri-
cally. We allow the maximum level of proteins in
our models to range from 103 to 106 copies per cell
(see Supplementary Information to von Dassow
et al., 2000, for the rationale). Considering two
proteins that bind to each other, in the standard
parameter space box we use, only a small sliver
will exist where those proteins have the same
maximum expression level. If the two proteins
have widely different concentrations in the cell,
the excess of one may completely swamp the other.
This is the basis for ligand buffering between any
kind of interacting entities, from protons to
people. Imagine that Arm, for instance, can
accumulate to a tenfold higher level than Pan,
and that Arm and Pan bind with reasonably high
affinity. Then, even if the concentration of Arm is
half maximal in one cell but maximal in the
others, the concentration of the complex will be
nearly the same in both cells.

But then, how is it that en is not expressed
ubiquitously as well under such conditions? In the
model, transcription of en is regulated by both the
Arm–Pan complex and by CN; meanwhile, En
prevents expression of ci. The CN–En double
negative requires a positive input if it is to be a
bistable switch: both arm and pan are expressed
ubiquitously, and if they are not stoichiometrically
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matched then it is possible that they merely
provide a basal input to en. In that case, once en
gets turned on, it keeps itself on by repressing its
only repressor, ci. Wg signaling would be required
only initially, as en expression ramps up. Indeed
this may explain two phenomena about the
segment polarity network. There is only a rela-
tively short window of time during which en is
dependent on Wg signaling, and that is during
germ band extension as the expression of both
genes is still below maximum. Second, Heemskerk
showed that heat-shock induced ectopic expres-
sion of en after germ-band extension could cause
an expansion of the en stripe (Heemskerk et al.,
’91). Historically this result was taken to indicate
that En activates its own production. However, it
could be instead that the heat-shock induced En
merely shuts down ci expression, and that by late
germ-band extension there is sufficient Arm and
Pan that excess En ‘‘throws the switch’’ and is
henceforth clonally inherited (see Fig. 14D).

These considerations suggest how to achieve
stripe sharpening. Arm and Pan should be basally
expressed at similar levels and be able to accumu-
late to nearly the same maximal cellular concen-
tration, and perhaps Wg and Fz should be likewise
constrained. Furthermore, we wondered whether,
in this context, it would help sharpen the stripe if
free Pan were to act as a repressor of en. It turns
out that only stoichiometric balancing of Arm and
Pan matters. Since automated screening methods
have not yet given us reliable results with the
stripe-sharpening challenge, we resorted to
screening the model’s behavior by eye. We began
by collecting automatically, for several variants of
spg4d, several hundred solutions that pass the
standard 4-cell-wide pattern-holding test. We then
challenged them with the 8-cell-wide ‘‘germ band
extended’’ test (Fig. 13) and watched how the
model behaved over a 1,000-min period when
governed by each of those parameter sets. For
spg4d itself, we screened a first catch of 4600
solutions and found only one that sharpened the en
stripe (i.e., the posterior en cell turned off both en
and hh completely, replacing them with a cell state
in which full-length Ci and ptc were both abun-
dantly expressed). In one other case, the posterior
en cell merely came to express en at a reduced level
compared to the cell immediately adjacent to the
Wg-producing cells. This shows that spg4d is
capable, intrinsically, of accomplishing this task,
but the frequency is on the order of 1 in 105 or less.

We conducted identical screenings with variants
of spg4d that introduced either constraints on the

Fig. 14. Elements of the segment polarity network.
Individual panels here represent subsets of the connections
in Figs. 8 and 10, some of them abbreviated. (A) Positive
feedback between slp and wg makes a bistable switch which,
like the simplistic example in Fig. 2, could have two stable
steady states, both components on or both off, with a threshold
for turning on or off. (B) Similar to A, mutual activation
between wg, en, and hh potentially creates another bistable
switch. (C) Mutual repression between slp and en, when
combined with a positive input to each, makes an exclusive-or
switch in which one or the other can be expressed at a level
determined by the input (in this case provided by Wg
signaling). (D) The mutual repression we hypothesize between
ci and en would also make an exclusive-or switch (enclosed in
the dashed box), but in this case the positive inputs to each
side of the switch are independently adjustable, unless
otherwise coupled (as they are in the context of the whole
circuit). This sub-circuit might explain how the en expressing
cell state becomes self-sustaining at the end of germ-band
extension (CIT Heemskerk); if sufficient Arm–Pan complex
accumulates in the absence of Wg signaling, then pre-existing
high-level En in the cell might prevent repressors, such as slp
and possible ci, from accumulating in the same cell. This
hypothesis could be tested by replicating Heemskerk’s hs–en
experiments in a genetic background in which the expected
background level of the Arm–Pan complex was reduced. (E)
Interactions between the products of ptc and ci constitute a
homeostatFthese components participate in a feedback loop
with a single negative interaction: the more Ptc is produced in
response to full-length Ci protein, the more Ci is converted to
CN, not only depleting Ci but also repressing ptc transcription.
If ci is basally expressed, as it is in the models discussed here,
then negative feedback leads to a stable steady state with some
intermediate level of ptc expression, neither fully expressed
nor fully repressed. Hh protein binds to and titrates away Ptc;
thus Hh tunes the homeostat, just as we adjust the household
thermostat. Titrating away Ptc decreases Ci cleavage rate,
consequently increasing the steady-state ptc expression level.
In addition increased Ptc expression soaks up Hh, as long as
Ptc can accumulate to a level commensurate with the pool of
Hh available for binding.
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relative expression levels of Arm and Pan, or
additional similar constraints on Wg and Fz, or
the postulated repressive link between Pan and
en. When imposing the first of these constraints,
out of 3� 104 random samples, we found 6 that
exhibited some evidence of en stripe sharpening, 3
of which completely turned off en in the cell
further from the Wg source. This is about an order
of magnitude more frequent (at least) than for
spg4d (6 in 3� 104 vs. 2 in 6� 105). Other
constraints on stoichiometry reduced rather than
improved the frequency, and the Pan–en link had
no detectable effect. Thus, we could patch up our
model to make it behave as we desired, but the
constraint introduced is a serious one, and even
with it the model does not perform exceptionally
well at this test.

Summary

For the model to exhibit sharpening of the wg
and en stripes we had to impose, in the first
instance, a specific mechanism for combining two
regulatory pathways that feed into wg transcrip-
tion, and in the second instance, a constraint that
the two components of the crucial transcriptional
switch that mediates en activation must be
expressed at nearly equal levels. We are currently
investigating en stripe sharpening in real em-
bryos. We find that En expression increases at
least 5-fold during germ-band extension and,
furthermore, that En is expressed in one-cell-wide
stripes only transiently, if ever (V. Rich and G. von
Dassow, unpublished). Nevertheless, comparing
an En-GFP reporter with En antibody staining
shows that some cells do appear to lose en
expression on the posterior edge of the stripe,
confirming Vincent and O’Farrell’s (’92) results
(V. Rich and G. von Dassow, unpublished). Thus it
may be that cells that are on their way to, but have
not yet achieved, full en expression fail to maintain
it as they move posteriorly. Whatever the answer,
from the modeling perspective what is important
is that we had difficulty getting a simple model of
the Wg pathway simply to turn off. Of course
future, more faithful models might erase this
difficulty. Regardless, the same difficulty with
stoichiometric balancing is likely to afflict many
similar signaling processes that rely on regulating
relative availability of binding partners.

CONCLUSIONS

In this paper we sought to take known facts or
hypotheses, incorporate them into our working

model of the segment polarity gene network, and
assess how the model’s behavior alters in re-
sponse. That is, we have engaged here in what
Lawrence and Sampedro (’93), quoting Crick, call
‘‘carpentry.’’ Lawrence and Sampedro criticized
early attempts to synthesize facts about Droso-
phila segmentation in terms of causal chains of
interactions among individual genes. They remark
that the carpentry approach to synthesis often
results in circular or self-contradictory and ad hoc
collections of predicates, and they proposed
instead to conceive of the segment-patterning
process in terms of gradients, abstracted from
the specific activities of particular molecules in
determining cell states within the segment. Lawr-
ence and Sampedro articulated an aesthetically
and phenomenologically satisfying hypothesis
without substantial recourse to what even then
was remarkable knowledge of the molecular
nature of segment polarity genes and their
interactions. However, their account, by its very
nature, provides no synthesis of the disparate facts
of molecular genetic analysis and thus seems
unsatisfying to someone attempting to fit together
the molecular puzzle pieces.

The problem with the carpentry that Lawrence
and Sampedro derided is that it consisted of verbal
reasoning only. This paper represents an attempt
to formalize carpentry, using computers to solve
differential equations that characterize the genetic
interactions inferred by molecular geneticists.
Whatever else one can say about the usefulness
of models of complex systems, computers are not
fooled by circularity and logical contradictions,
and thus the computer model lets us conduct a
kind of reconstitution experiment with the known
facts about the process of interest. This exercise
yields three pragmatic results: first, a set of
empirically testable predictions about the specific
real network expressed in the models; second,
general predictions about the emergence of sys-
tems-level properties of gene regulatory networks;
and third, a platform from which to explore the
evolvability of developmental mechanisms, hope-
fully developing a bridge across the conceptual gap
between mechanistic analysis of development
and population-level studies of variation and
variability.

In addition, the reconstitution exercise reveals
how simple elements, such as positive and nega-
tive feedback loops, with readily understood
dynamical properties conspire to form a larger
mechanism. The segment polarity model consists
of several intertwined dynamical elements, as
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shown in Figure 14. It includes at least two
positive feedback loops that, separately, could
exhibit bistable on/off switch-like function: wg
auto-activation, likely via slp (Fig. 14A), and the
mutual promotion of wg and en expression (Fig.
14B). In addition there are at least two pairwise
cross-inhibitions which, given some positive
input to each component, ought to behave as
either/or switches: mutual inhibition between en
and slp (Fig. 14C), and the hypothetical mutual
inhibition by ci and en (Fig. 14D). In the former
case, Wg signaling provides a common positive
input to each gene, and in the latter case either
basal expression or, again, Wg signaling provides
the necessary input. Finally, the model incorpo-
rates a single negative feedback loop between ci
and ptc that could act as a homeostat (Fig. 14E).

The first two dynamical elements in Figure 14
promote stabilization of wg-expressing and en-
expressing cell states, respectively, assuming
permissive conditions for each state. For example,
in the case of Figure 14A, the permissive condi-
tions would be that there be too little CN present
to repress wg, and that there be too little En
present to repress slp. The next two elements
ensure mutual exclusivity of wg- and en-expres-
sing cell states; note that a cell state expressing
both wg and en becomes possible if parameters are
tuned such that En is a weak repressor of slp, Slp
is a strong activator of wg but a weak repressor of
en, and either Ci is not required for wg expression
or En only weakly represses ci. The ci–ptc
homeostat maintains the responsiveness of a
ground state and also, depending on the relative
level of expression of Hh and Ptc, buffers Hh
concentration within the vicinity of its source.
Furthermore, if Arm and Pan concentrations are
tuned such that there is little or no basal
activation of en, and if Ci is actually required for
wg activation, then the ground state can ‘‘invade’’
either the wg- or the en-expressing cell state,
should the factors sustaining those states fade
(i.e., as the germ band extends). At least, that’s
how the model works.

This conception of the segment polarity module
as a system of mutually entrained cell state
switches explains how a global ‘‘design’’ feature,
the level of cooperativity in regulatory interac-
tions, confers upon the network robustness to
variation in parameters, to initial conditions, or to
noise. Increasing cooperativity promotes switch-
like behavior in the dynamical elements dia-
grammed in Figure 14A–D. Looking at it the other
way around, with low cooperativities throughout

these switching elements, the cell states that
define the model’s functional behavior become,
in a sense, more elastic. Thus, for example, at low
cooperativity the entire network ‘‘rings’’ in re-
sponse to oscillations generated in the ci–ptc loop,
or in response to noise, thus disrupting the
maintenance of a stable spatial regime of cell
states. In the same way, at low cooperativity the
network’s steady states ‘‘stretch’’ easily in re-
sponse to changes in parameters.

Genetic mutations and environmental variation
both correspond to coordinated changes in some
subset of parameter values. Any mutation of a
particular locus in the network corresponds to a
move along some diagonal in parameter space.
Similarly, an environmental perturbation such as
a change in temperature corresponds to a move
along some (other) diagonal in parameter space.
Developmental noise might correspond to a ran-
dom walk, over the course of development, along
arbitrary diagonals. (One must also think of any
change in initial conditions as an equivalent
perturbation.) Increasing cooperativity within
the dynamical elements shown in Figure 14A–D
increases the tolerance of the network to moves
along any diagonal in parameter space. This
suggests that switching networks such as this
one epitomize a congruence, in the sense of Ancel
and Fontana (2000), between robustness to the
three major categories of insult that physiological
mechanisms confront.

Population genetic models show that while it
may be relatively straightforward to select for
canalization against environmental perturbations,
it is difficult to concoct an analogous scenario for
genetic canalization (Wagner et al., ’97; Gibson and
Wagner, 2000). The apparent plastogenetic con-
gruence manifest in the segment polarity model,
and also in our model of the neurogenic network
(Meir et al., 2002a), raises the possibility that
genetic canalization might emerge as a byproduct
of selection for robustness to environmental per-
turbation. More generally, these considerations
make us hopeful that models like these can provide
an interpretive metaphor to explore the mechan-
istic origins of systems-level properties of genetic
architecture, such as epistasis, canalization, and
dominance, which until recently have been neces-
sarily treated as black boxes in evolutionary theory.
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MATHEMATICAL APPENDIX

Each of the models described in this paper consists of a system of coupled ordinary differential
equations, assembled and solved by the computer program Ingeneue (described in companion paper by
Meir et al., ’02, this issue). In this section we use the following short-hand:

� X; �X ; �Xð Þ ¼ X�X

��X

X þ X�X

� �
; ð1Þ

 ðX; �X ; vXÞ ¼ 1 � �ðX; �X ; vXÞ; ð2Þ

Xi;j ¼ amount of X on cell i; face j;

n i; jð Þ ¼ index of neighbor to cell i at face j;

Xn i;jð Þ;jþ3 ¼ X on cell face apposite to i; j;

Xtot
i ¼

X6

j¼1

Xi;j ¼ total X in cell i;

Xtot
n i;jð Þ ¼

X6

j¼1

Xn i;jð Þ;jþ3 ¼ total X presented to cell i by neighbors:

All equations in this appendix are presented in the dimensionless form used by Ingeneue and
explained in the supplement to von Dassow et al. (’00). In Ingeneue each process (transcription,
cleavage, first-order decay, ligand binding, etc.) must be represented as a single additive term. Below,
equations correspond directly to the script used by Ingeneue, except that for brevity and convenience we
group terms differently.

The model referred to as ‘‘spg1’’ is identical to the model described in that paper, and consists of the
following equations, instantiated across an arbitrary-size cell grid (enumerated by the index i below):

d eni

d�
¼ T�

Hen
� EWGtot

n i;jð Þ

��
� CNi; �CNen; �CNenð Þ; �WGen; �WGenÞ�eniÞ; ð3Þ

d ENi

d�
¼ To

HEN
eni � ENið Þ; ð4Þ

d wgi

d�
¼ T�

Hwg

�CIwg � � CIi �  CNi; �CNwg; �CNwg

� �
; �CIwg; �CIwg

� �
þ �WGwg � � IWGi; �WGwg; �WGwg

� �
1 þ �CIwg � � CIi �  CNi; �CNwg; �CNwg

� �
; �CIwg; �CIwg

� �
þ �WGwg � � IWGi; �WGwg; �WGwg

� �
 !

� T�wgi

Hwg
; ð5Þ
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d IWGi

d�
¼ T�

HIWG
wgi � IWGið Þ þ T� rEndoWGEWGtot

i � rExoWGIWGi

� �
; ð6Þ

d EWGi;j

d�
¼T�

rExoWGIWGi

6 � rEndoWGEWGi;jþ
rMxferWG EWGn i;jð Þ;jþ3 � EWGi;j

� �
þ

rLMxferWG EWGi;j�1 þ EWGi;jþ1 � 2EWGi;j

� �
0
B@

1
CA� T�EWGi;j

HIWG
; ð7Þ

d ptci

d�
¼ T�

Hptc
ð�ðCIi �  ðCNi; �CNptc; �CNptcÞ; �CIptc; �CIptcÞ � ptciÞ ð8Þ

d PTCi;j

d�
¼ T�

HPTC

ptci

6
� PTCi;j

� �
� T�kPTCHH½HH��HHn i;jð Þ;jþ3 � PTCi;j

þ T�rLMxferPTC PTCi;j�1 þ PTCi;jþ1 � 2PTCi;j

� �
; ð9Þ

d cii

d�
¼ T�

Hci
ð�ðBi �  ðENi; �ENci; �ENciÞ; �Bci; �BciÞ � ciiÞ; ð10Þ

d CIi

d�
¼ T�

HCI
cii � CIið Þ � T�CCICIi � � PTCtot

i ; �PTC�CI; �PTC�CI

� �
; ð11Þ

d CNi

d�
¼ T�CCICIi � � PTCtot

i ; �PTC�CI; �PTC�CI

� �
� T�CNi

HCI
ð12Þ

d hhi

d�
¼ T�

Hhh
� ENi �  CNi; �CNhh; �CNhhð Þ; �ENhh; �ENhhð Þ � hhið Þ; ð13Þ

d HHi;j

d�
¼ T�

HHH

hhi

6
� HHi;j

� �
� T�kPTCHH½PTC��PTCn i;jð Þ;jþ3 � HHi;j

þ T�rLMxferHH HHi;j�1 þ HHi;jþ1 � 2HHi;j

� �
; ð14Þ

d PHi;j

d�
¼ T�kPTCHH½HH��HHn i;jð Þ;jþ3 � PTCi;j �

T�PHi;j

HPH
: ð15Þ

In Section II we described re-wiring spg1 in several ways. For example, adding inhibition of ptc
transcription by En amounts to replacing Eq. (8) above with

d ptci

d�
¼ T�

Hptc
ð�ðCIi �  ðCNi; �CNptc; �CNptcÞ; �CIptc; �CIptcÞ �  ðENi; �ENptc; �ENptcÞ � ptciÞ: ð16Þ

For another example, to introduce the products of the gene slp, as in line 14 in Table 3, we add the
equations

d slpi

d�
¼ T�

Hslp
ð�ðEWGtot

i �  ENi; �ENslp; �ENslp

� �
; �WGslp; �WGslp

� �
� slpiÞ; ð17Þ

d SLPi

d�
¼ T�

HSLP
slpi � SLPið Þ: ð18Þ

In addition we modify the equations for en and wg, replacing Eqs. (3) and (5) as follows:

d eni

d�
¼ T�

Hen
� EWGtot

i �  CNi; �CNen; �CNenð Þ; �WGen; �WGen

� �
�  SLPi; �SLPen; �SLPenð Þ � eni

� �
; ð19Þ

d wgi

d�
¼ T�

Hwg

�CIwg � � CIi �  CNi; �CNwg; �CNwg

� �
; �CIwg; �CIwg

� �
þ �SLPwg � � SLPi; �SLPwg; �SLPwg

� �
1 þ �CIwg � � CIi �  CNi; �CNwg; �CNwg

� �
; �CIwg; �CIwg

� �
þ �SLPwg � � SLPi; �SLPwg; �SLPwg

� �
 !

� T�wgi

Hwg
: ð20Þ
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Naturally this represents just one of the many ways which one could introduce the new Nodes and
links. Equations (5) and (20) both express an additive relationship between the positive influences on
wg transcription. In Section IV we show that such a format makes it very difficult to find parameters
that enable the stripe of wg-expressing cells to sharpen into a single-cell-wide row. An alternate,
synergistic formulation that enables wg stripe sharpening corresponds to replacing Eq. (5) with

d wgi

d�
¼ T�

Hwg
� CIi �  CNi; �CNwg; �CNwg

� �
; �CIwg; �CIwg

� �
� � IWGi; �WGwg; �WGwg

� �
� wgi

� �
: ð21Þ

More complex versions of the model, such as spg2 and spg4, are derived in the same way, by adding
extra Nodes and modifying various additive terms as needed. For example, the model ‘‘spg2’’, Variant E
(see Fig. 10 and Table 4), consists of the following equations:

d eni

d�
¼ T�

Hen
� APi �  CNi; �CNen; �CNenð Þ; �APen; �APenð Þ � enið Þ; ð22Þ

d ENi

d�
¼ T�

HEN
eni � ENið Þ; ð23Þ

d wgi

d�
¼ T�

Hwg

�CIwg � � CIi �  CNi; �CNwg; �CNwg

� �
; �CIwg; �CIwg

� �
þ �WGwg � � IWGi; �WGwg; �WGwg

� �
1 þ �CIwg � � CIi �  CNi; �CNwg; �CNwg

� �
; �CIwg; �CIwg

� �
þ �WGwg � � IWGi; �WGwg; �WGwg

� �
 !

� T�wgi

Hwg
; ð24Þ

d IWGi

d�
¼ T�

HIWG
wgi � IWGið Þ þ T� rEndoWGEWGtot

i � rExoWGIWGi

� �
; ð25Þ

d EWGi;j

d�
¼ T�

rExoWGIWGi

6 � rEndoWGEWGi;jþ

rMxferWG EWGn i;jð Þ;jþ3 � EWGi;j

� �
þ

rLMxferWG EWGi;j�1 þ EWGi;jþ1 � 2EWGi;j

� �
�

T�kFZWG½FZ��FZi;j � EWGi;j

0
BBBBB@

1
CCCCCA� T�EWGi;j

HIWG
; ð26Þ

d fzi

d�
¼ T�

Hfz
� PANi �  APi; �APfz; �APfz

� �
; �PANfz; �PANfz

� �
� fzi

� �
; ð27Þ

d FZi;j

d�
¼ T�

HFZ

fzi

6
� FZi;j

� �
� T�kFZWG½EWG��EWGi;j � FZi;j þ T�rLMxferFZ FZi;j�1 þ FZi;jþ1 � 2FZi;j

� �
; ð28Þ

d FWi;j

d�
¼ T�kFZWG½EWG��EWGi;j � FZi;j þ T�rLMxferFW FWi;j�1 þ FWi;jþ1 � 2FWi;j

� �
� T�FWi;j

HFW
; ð29Þ

d armi

d�
¼ T�

Harm
� Bi; �Barm; �Barmð Þ � armið Þ; ð30Þ

d ARMi

d�
¼ T�

HARM
armi � ARMið Þ

� T�CARMARMi �  FWtot
i ; �FW �ARM; �FW �ARM

� �
� T�kARMPAN½PAN��PANi � ARMi; ð31Þ

d pani

d�
¼ T�

Hpan
� Bi; �Bpan; �Bpan

� �
� pani

� �
; ð32Þ

d PANi

d�
¼ T�

HPAN
pani � PANið Þ � T�kARMPAN½ARM��ARMi � PANi; ð33Þ
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d APi

d�
¼ T�kARMPAN½PAN��PANi � ARMi �

T�APi

HAP
; ð34Þ

d ptci

d�
¼ T�

Hptc
� CIi �  CNi; �CNptc; �CNptc

� �
; �CIptc; �CIptc

� �
� ptci

� �
; ð35Þ

d PTCi;j

d�
¼ T�

HPTC

ptci

6
� PTCi;j

� �
� T�kPTCHH½HH��HHn i;jð Þ;jþ3 � PTCi;j þ T�rLMxferPTC PTCi;j�1 þ PTCi;jþ1 � 2PTCi;j

� �
; ð36Þ

d cii

d�
¼ T�

Hci
� Bi �  ENi; �ENci; �ENcið Þ; �Bci; �Bcið Þ � ciið Þ; ð37Þ

d CIi

d�
¼ T�

HCI
cii � CIið Þ � T�CCICIi � � PTCtot

i ; �PTC�CI; �PTC�CI

� �
; ð38Þ

d CNi

d�
¼ T�CCICIi � � PTCtot

i ; �PTC�CI; �PTC�CI

� �
� T�CNi

HCI
; ð39Þ

d hhi

d�
¼ T�

Hhh
� ENi �  CNi; �CNhh; �CNhhð Þ; �ENhh; �ENhhð Þ � hhið Þ; ð40Þ

d HHi;j

d�
¼ T�

HHH

hhi

6
� HHi;j

� �
� T�kPTCHH½PTC��PTCn i;jð Þ;jþ3 � HHi;j þ T�rLMxferHH HHi;j�1 þ HHi;jþ1 � 2HHi;j

� �
; ð41Þ

d PHi;j

d�
¼ T�kPTCHH½HH��HHn i;jð Þ;jþ3 � PTCi;j �

T�PHi;j

HPH
: ð42Þ

A subset of the network including only en, slp, and wg (described in Fig. 6 of the companion paper) is
represented by the following equations:

d eni

d�
¼ T�

Hen
� WGtot

i ; �WGen; �WGen

� �
�  SLPi; �SLPen; �SLPenð Þ � eni

� �
; ð43Þ

d ENi

d�
¼ T�

HEN
eni � ENið Þ; ð44Þ

d slpi

d�
¼ T�

Hslp
� WGtot

i ; �WGslp; �WGslp

� �
�  ENi; �ENslp; �ENslp

� �
� slpi

� �
; ð45Þ

d SLPi

d�
¼ T�

HSLP
slpi � SLPið Þ; ð46Þ

d wgi

d�
¼ T�

Hwg
� SLPi; �SLPwg; �SLPwg

� �
� wgi

� �
; ð47Þ

d WGi;j

d�
¼ T�

HWG

wgi

6
� WGi

� �
þ T� rMxferWG WGn i;jð Þ;jþ3 � WGi;j

� ��
þrLMxferWG WGi;j�1 þ WGi;jþ1 � 2WGi;j

� ��
:

ð48Þ
Another simplified model used Section III of this paper collapses Nodes representing mRNA and

protein into a single Node for each locus:

d ENi

d�
¼ T�

HEN
� EWGtot

n i;jð Þ �  CNi; �CNen; �CNenð Þ; �WGen; �WGen

� �
� ENi

� �
; ð49Þ
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d IWGi

d�
¼ T�

HIWG

�CIwg � � CIi �  CNi; �CNwg; �CNwg

� �
; �CIwg; �CIwg

� �
þ �WGwg � � IWGi; �WGwg; �WGwg

� �
1 þ �CIwg � � CIi �  CNi; �CNwg; �CNwg

� �
; �CIwg; �CIwg

� �
þ �WGwg � � IWGi; �WGwg; �WGwg

� �
 !

� T�IWGi

HIWG
þ T� rEndoWGEWGtot

i � rExoWGIWGi

� �
;

ð50Þ

d EWGi;j

d�
¼ T�

rExoWGIWGi

6 � rEndoWGEWGi;jþ

rMxferWG EWGn i;jð Þ;jþ3 � EWGi;j

� �
þ

rLMxferWG EWGi;j�1 þ EWGi;jþ1 � 2EWGi;j

� �
0
BB@

1
CCA� T�EWGi;j

HIWG
; ð51Þ

d PTCi;j

d�
¼ T�

HPTC

� CIi �  CNi; �CNptc; �CNptc

� �
; �CIptc; �CIptc

� �
6

� PTCi;j

� �

� T�kPTCHH½HH��HHn i;jð Þ;jþ3 � PTCi;j þ T�rLMxferPTC PTCi;j�1 þ PTCi;jþ1 � 2PTCi;j

� �
;

ð52Þ

d CIi

d�
¼ T�

HCI
ð�ð Bi �  ENi; �ENci; �ENcið Þ; �Bci; �Bcið Þ � CIiÞ � T�CCICIi � � PTCtot

i ; �PTC�CI; �PTC�CI

� �
; ð53Þ

d CNi

d�
¼ T�CCICIi � � PTCtot

i ; �PTC�CI; �PTC�CI

� �
� T�CNi

HCI
; ð54Þ

d HHi;j

d�
¼ T�

HHH

� ENi �  CNi; �CNhh; �CNhhð Þ; �ENhh; �ENhhð Þ
6

� HHi;j

� �
� T�kPTCHH½PTC��PTCn i;jð Þ;jþ3 � HHi;j þ T�rLMxferHH HHi;j�1 þ HHi;jþ1 � 2HHi;j

� �
; ð55Þ

d PHi;j

d�
¼ T�kPTCHH½HH��HHn i;jð Þ;jþ3 � PTCi;j �

T�PHi;j

HPH
: ð56Þ

Notice that Eqs. (49–56) consist largely of the same terms as Eqs. (3–15). In the original model, the
two processes of translation and first-order non-specific decay cause each (scaled) protein concentration
to track the mRNA concentration at a rate determined by the protein’s half-life. In the segment polarity
models, most proteins undergo additional transformations; however En does not. Equation (4),
governing EN concentration, is a simple tracking function (likewise for Eq. (23), in spg2). The non-
dimensionalization recipe we use reveals that the half-life of each molecular species determines how
long that species takes to decline or accumulate to steady-state concentration. The half-lives thus
govern the timescale on which Nodes respond to any perturbations at the biosynthetic level. The
difference between the collapsed version in Eqs. (49–56) and our ‘‘normal’’ form, in which mRNA and
protein are separate species, is the elimination of this dampening layer. In the normal form, if the
protein’s half-life is longer than the mRNA’s half-life, separation into two (or more) steps insulates the
concentration of functional product (protein) from fluctuations in the level of transcriptional stimulus.
The collapsed network consequently can work, but, more often than the original network, fails to hold a
stable steady state in the face of oscillations generated within the ci-ptc negative feedback loop. The real
process of gene expression is broken into many intermediate steps, as are metabolic pathways, and one
wonders if evolution has exploited the oscillation-damping effect of intermediate steps with slower
response times to insulate biochemical networks against stochastic variability.

Finally, in Section III we compared networks ‘‘inspired by actual events’’ to a simple network of our
own concoction, which is described by the following equations governing the products of two
hypothetical genes called A and B:

d ai

d�
¼ T�

Ha
ð�ðABtot

i �  Btot
n i;jð Þ; �Ba; �Ba

� �
; �ABa; �ABaÞ � � Ai; �Aa; �Aað Þ � aiÞ; ð57Þ
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d Ai;j

d�
¼ T�

HA

ai

6
� Ai;j

� �
þ T�

kAB!AþB
½B��
½A��

ABi;j � kAþB!AB½B��Bi;j � Ai;j

þrMxferA An i;jð Þ;jþ3 � Ai;j

� �
þ rLMxferA Ai;j�1 þ Ai;jþ1 � 2Ai;j

� �
0
@

1
A; ð58Þ

d bi

d�
¼ T�

Hb
ð�ðABtot

i �  Atot
n i;jð Þ; �Ab; �Ab

� �
; �ABb; �ABbÞ � � Bi; �Bb; �Bbð Þ � biÞ; ð59Þ

d Bi;j

d�
¼ T�

HB

bi

6
� Bi;j

� �
þ T�

kAB!AþBABi;j � kAþB!AB½A��Ai;j � Bi;j

þrMxferB Bn i;jð Þ;jþ3 � Bi;j

� �
þ rLMxferB Bi;j�1 þ Bi;jþ1 � 2Bi;j

� �
 !

; ð60Þ

d ABi;j

d�
¼ �T�ABi;j

HAB
þ T�

kAþB!AB½A��Ai;j � Bi;j � kAB!AþBABi;j

þrMxferAB ABn i;jð Þ;jþ3 � ABi;j

� �
þ rLMxferAB ABi;j�1 þ ABi;jþ1 � 2ABi;j

� �
 !

: ð61Þ

This network is entirely fictional. Any resemblance to real networks, living or dead, is accidental.
Note that the term for dissociation in the equation governing A is scaled by the ratio of the maximum
attainable concentrations of A and B ([A]o/[B]o) to make the non-dimensionalization scheme work
out; otherwise the imaginary components A and B are symmetric with respect to their interactions
and transcriptional control, but can differ quantitatively because they are governed by indepen-
dent parameters. If their various parameters are likewise forced to be symmetrically valued, then
[A]o/[B]o=1.
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