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ABSTRACT Here we describe a software tool for synthesizing molecular genetic data into
models of genetic networks. Our software program Ingeneue, written in Java, lets the user quickly
turn a map of a genetic network into a dynamical model consisting of a set of ordinary differential
equations. We developed Ingeneue as part of an ongoing effort to explore the design and evolvability
of genetic networks. Ingeneue has three principal advantages over other available mathematical
software: it automates instantiation of the same network model in each cell in a 2-D sheet of cells; it
constructs model equations from pre-made building blocks corresponding to common biochemical
processes; and it automates searches through parameter space, sensitivity analyses, and other
common tasks. Here we discuss the structure of the software and some of the issues we have dealt
with. We conclude with some examples of results we have achieved with Ingeneue for the Drosophila
segment polarity network. J. Exp. Zool, (Mol. Dev. Evol.) 294:216–251, 2002. r 2002 Wiley-Liss, Inc.

The advent of whole-genome sequencing, DNA
microarrays, and proteomics promises an immi-
nent embarrassment of riches. Biologists are
accumulating a phenomenal amount of informa-
tion about genes, their functions, and their
interactions. Soon, if not already, the available
maps of known genetic interactions for any
particularly well-studied cell physiological or
developmental process will be so complex as to
defy the ability of human brains to understand
and manipulate those maps without help from
computers. Most genes can be said to have a
‘‘function’’ only as constituent parts of networks
of cross-regulatory and biochemical interactions
with other genes and their products. Increasingly,
biologists think in terms of whole networks, the
biological analogue of the integrated circuit. The
network, rather than any individual gene, is the
causal unit that does useful things such as
transduce, transmit, or transmute signals, stabi-
lize cell states, form expression patterns in groups
of cells, etc. This is particularly evident for many
paradigmatic developmental mechanisms in which
genetic networks produce patterns in space (e.g.,
the segmentation cascade in Drosophila) or time
(e.g., cell cycle oscillator or the circadian clock).

There is growing interest in using computers to
synthesize genetic data into mechanistic models at

the network level. Several inter-related goals
motivate that interest:

K For some biological process of interest (e.g.,
bacterial chemotaxis, Drosophila segment bound-
ary formation, the cell cycle, etc.), is the known
map of interactions between molecular compo-
nents complete enough to actually explain that
phenomenon?

K If so, what systems-level properties, unantici-
pated from the nature of the parts themselves,
emerge in the whole network?

K What rules, if any, govern ‘‘design’’ of genetic
networks, and which details are crucial to making
mechanisms that work?

K How does network architecture constrain or
facilitate the interaction between evolutionary
and developmental processes?

A natural approach for making computer mod-
els is to represent a network of interacting genes
as a set of coupled ordinary differential equations
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(ODEs) and then integrate the system of equa-
tions over time to determine how the network
behaves (Edgar et al., ’89; Slack, ’83; Tyson et al.,
’96; Barkai and Leibler, ’97; Bray et al., ’98; Laub
and Loomis, ’98). (For a selection of alternate
approaches see Kauffman, ’93; McAdams and
Shapiro, ’95; Reinitz and Sharp, ’95; Thieffry
et al., ’98; Barkai and Leibler, 2000.) Although
excellent general-purpose computer programs ex-
ist for solving ODEs (e.g., Mathematica, Maple, or
Matlab) we find them unwieldy for genetic net-
works. For instance, a simple representation of the
segment polarity network in Drosophila (see
below) involves 13 different components, operat-
ing across at least 4 cells, with the dynamics of the
network governed by 48 free parameters and
including E140 coupled equations. Using a stan-
dard mathematics package, the task of construct-
ing the model is slow and error-prone and requires
a degree of mathematical and programming
sophistication which most lab-bench biologists do
not possess.

This paper describes the computer program
Ingeneue, which we wrote specifically to construct
models of gene networks and explore their pattern
formation repertoire. Ingeneue uses a library of
stereotyped, biologically meaningful building
blocks to assemble models. This makes it straight-
forward to translate network diagrams, such as
those that often appear as the last figure in
molecular genetics articles, into systems of ODEs.
Having assembled a model, Ingeneue imposes a
user-specified initial pattern and then integrates
the ODEs to find the temporal and spatial patterns
it produces over time. Ingeneue can search for
combinations of parameter values that confer on a
network the ability to make particular target
patterns. Once sets of ‘‘working’’ parameter
values are discovered, Ingeneue helps one test
how sensitive the model is to changing those
values. Ingeneue is highly modular and is designed
to be extended with a minimum of effort. Most
features can be accessed through a point-and-click
interface. Software like Ingeneue allows biologists
with minimal mathematical training to make and
explore models of their own networks and, if
widely adopted, will foster a kind of standardiza-
tion that will make the results of such studies
mutually intelligible.

We have used Ingeneue to explore two pattern-
ing networks in Drosophila: the segment polarity
network (von Dassow et al., 2000; this paper; and
companion paper by von Dassow and Odell, 2002,
this issue) and the neurogenic/proneural network

(Meir et al., 2002). Our results confirm the
usefulness of modeling at the network level, both
as a tool for testing the plausibility of proposed
mechanisms and as a way of revealing network-
level properties that would not otherwise come to
light. Our initial model of the segment polarity
network attempted to reconstitute the real net-
work’s behavior using only the best-understood
players and the best-documented connections
among them. Using Ingeneue we found this model
was completely incapable of mimicking the known
expression patterns of segment polarity genes. In
order to make our model work we needed to add
two more interactions, one of which was well
documented but whose importance was not fully
clear beforehand, and another, which, frankly, was
a guess, suggested only by circumstantial evi-
dence. This result highlights the need for a way to
check, formally, whether the current understand-
ing of a genetic network is complete, and if not, to
develop hypotheses for what pieces may be
missing. Once patched up, we discovered that
our model was astonishingly robust to changes in
both the parameters that govern the kinetics of
component molecules and the initial pre-pattern
(von Dassow et al., 2000). This is an empirically
testable, network-level property that we doubt
could have been intuited from the known facts
about the individual segment polarity genes and
their interactions but which has very interesting
theoretical and practical implications.

Here we describe both the design of Ingeneue as
well as its capabilities and interface. Ingeneue is a
work-in-progress that we, its original users,
extend as we encounter new needs. Our goal in
writing this paper is not only to introduce
Ingeneue but also to summarize the lessons we
have learned in developing it and offer our ideas to
others developing similar software. Detailed in-
formation, including source code and tutorials, is
available with the program online at http://
www.ingeneue.org. In order to exemplify the use
of Ingeneue we will follow a model of the segment
polarity network in Drosophila throughout this
paper. The segment polarity network in reality
consists of dozens of genes and their products
whose earliest, fundamental function is to main-
tain parasegmental boundaries and provide posi-
tional information within each segment during
embryogenesis in Drosophila. Our initial minimal
model explicitly employs just five of those genes
and proposes to account only for how this network
stably maintains a boundary, as shown in Figure 1
(fully described in von Dassow et al., 2000). Here
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we illustrate Ingeneue’s ability to explore para-
meter spaces by providing additional results on the
effects of diffusion and cooperativity on this model.

OVERVIEW OF INGENEUE

Ingeneue is written using the object-oriented
language Java. Object-oriented programming
means dividing a program into classes of ‘‘ob-
jects,’’ where each object knows its own state, how
to perform its own behaviors, and how to interact
with other objects. This paradigm suits many
biological problems because biological systems
tend to divide naturally into distinct objects (e.g.,
species, individual organisms, genes, neurons,
etc.). Thus, Ingeneue consists of several inter-
dependent, extensible libraries of object types.
Some of them encapsulate representations of
biological entities or their properties, whereas
others are tools for manipulating those objects or
conducting numerical analyses. Java is rapidly
gaining favor as a language for constructing
scientific software, both because it is well-designed
and also because a program (including graphical
interface) written in Java runs on all kinds of
computer hardware and operating systems with-
out any changes. We find this to be true in practice
as well as in theory. Early in the evolution of the
Java language and platform, Java programs
suffered a serious performance deficit compared
to programs written using more traditional lan-
guages such as C/C++ or FORTRAN. However, by
now very efficient Java runtime environments are

available for the most commonly used computer
platforms, and our experience is that numerical
routines written in Java compete with similar
routines coded in C or C++.

Ingeneue’s core construction and analysis mod-
ule creates a system of ordinary differential
equations (and their initial conditions) from a
textual description of the network that the user
writes, and integrates those equations over time.
A graphical interface then allows the user to
modify quantitative (but not yet topological)
properties of the network and view its behavior.
The core can run without the interface so one can
run the program remotely, e.g., as a batch job on a
Unix server. Ingeneue represents a genetic net-
work using three types of objects: Nodes, Cells,
and Affectors (Fig. 2). Nodes are the network
components, such as mRNAs, proteins, and pro-
tein complexes; these are the dependent variables
in the model’s ODE system. Each Node tracks
temporal change in the concentration of a network
component within a single cell or cell compart-
ment. Since gene copy number does not change
over time we do not include a Node to track DNA.
For reference, the minimal segment polarity net-
work (Fig. 1) requires 13 Nodes per Cell: five
mRNAs, three directly transcribed intracellular
proteins, one protein fragment produced by
cleavage of the Cubitus interruptus protein, three
cell-surface proteins and one cell-surface protein
complex between HH and PTC (cell-surface
Nodes track six concentrations, one for each Cell
face). A 14th ‘‘dummy’’ Node provides a basal

Fig. 1. Segment polarity network and the target pattern.
(A) Core of the segment polarity network in Drosophila; this
is a ‘‘minimal subset’’ that we used in all work described in
this paper and in von Dassow et al. (2000). (B) The pattern we
asked the network to achieve and to maintain stably. Both the
network diagram and pattern are based on our synthesis of
the work of hundreds of researchers on these genes, and while

greatly simplified relative to the real network, they are
adequate to capture the most essential function of the
segment polarity network. A description of A with references
to the primary work is contained in the Supplement to von
Dassow et al. (2000), along with a description of how we
translated the network map into mathematical expressions.
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transcriptional input to the Node ci (which
represents the cubitus interruptus mRNA). In
Figure 1, Nodes are represented by oval icons for
mRNAs, rectangular icons for directly transcribed
proteins and their cleavage products, and hexago-
nal icons for dimers/polymers of those proteins.

Each cell in an epithelial sheet corresponds to
one of Ingeneue’s Cell objects, which stores a
complete set of that Cell’s Nodes in the network
along with the identities of each neighboring Cell.
Epithelial layers in developing Drosophila em-
bryos (and many other species as well) generally
consist of polygonal cells with roughly six sides.
The issue of how cell shape affects patterning is
worth exploring, but currently, for simplicity, we
represent Cells in Ingeneue as two-dimensional
regular hexagons that do not move. No constraint
inherent in Ingeneue’s design prevents us from
eventually adding a more sophisticated represen-
tation of cells, sheets of cells, movement of cells
within sheets, and mitoses. Each Ingeneue Cell
has seven compartments: a ‘‘cytoplasmic/nuclear’’
compartment, where all intracellular Nodes re-
side, and six ‘‘membrane’’ compartments, one for
each side of the cell. Ingeneue tracks concentra-
tions of membrane-bound components (for in-
stance trans-membrane ligands and receptors
such as WG, PTC, HH, and PH in Fig. 1)
separately for each cell face, and each pair of
neighboring cell faces interact independently.
Ingeneue allows these membrane-bound compo-
nents to flow from each side of a cell to the two
neighboring sides of the same cell. Ingeneue also
allows exchange between apposite faces of neigh-
boring cells. Together, these two features allow
molecules to ‘‘diffuse’’1 across the sheet of cells
(Fig. 2, middle panel). Ingeneue can easily accom-
modate other notions of cell compartmentalization
which certain other applications may require.

Ingeneue uses arrays of hexagonally packed
cells (Fig. 2). In the current version, boundaries
wrap around both horizontally and vertically
so, for instance, the left-hand neighbor of a cell

Fig. 2.

1Ingeneue does not do ‘‘real’’ diffusion, that is, concentration-
dependent flux governed by a partial differential equation parameter-
ized by D, hence the quotation marks. However the face-to-face
exchange mechanism corresponds to a coarse discretization of a flux
equation, and serves adequately for any purpose we have yet
encountered. In any case, we doubt that free diffusion, per se, is
realistic for most molecules expressed in embryonic tissues of animals;
rather, most secreted proteins probably associate with the cell surface
and extracellular matrix to greater or lesser degrees, and thus
Ingeneue’s mechanism seems to us more satisfying. It is also more
useful because it subsumes all the buzzwords: autocrine, paracrine,
and juxtacrine signaling, as well as free diffusion, can be achieved
within different parameter regimes.
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on the left edge is a cell on the right edge. Our
wrap-around boundaries, which give our cell
sheets the topology of a torus, remove boundary
effects. This is an advantage for spatially periodic
patterns such as those the segment polarity
network typically makes. In cases where wrap-
around boundaries are inappropriate, we add an
extra strip of ‘‘dead’’ cells around the edge of the
sheet with initial conditions that cause them not
to participate in the patterning process being
modeled. The initial segment polarity pattern is
composed of stripes, perpendicular to the ante-
rior–posterior axis, that repeat every four cells, so
for the crudest applications using this network we
can get away with a 4�1 rectangle of cells.

A major advantage of using Ingeneue for genetic
network modeling is that the user need specify the
network in a typical cell only once. Ingeneue does
the drudgery of instantiating the network into
each Cell in the model and setting up the
appropriate relations between neighboring cells.
Thus in Figure 2, there are only three components
we need to specify: wg (mRNA) and I-WG (protein)
in the intracellular compartment; and E-WG

(protein) in the cell surface compartment. There
are four interactions: wg-I-WG (translation); I-
WG2E-WG (bi-directional exchange between
compartments); the flux rate of E-WG around
the cell periphery; and the flux rate of E-WG from
cell to cell. This is much faster and more reliable
than enumerating the ODE system by hand, as
one would have to do absent a tool like Ingeneue:
imagine typing out all 120 ODEs (with all
connections represented by 870 additive terms,
carefully indexed to appropriate Cell and Cell face)
required for the 15-cell grid at the top of Figure 2!
For a realistic problem, such as the minimal
segment polarity model in a mere 4� 1 cell grid,
the use of a standard symbolic mathematics
package would require the user to type out a
system of nearly 140 coupled ODEs. Ingeneue
reduces this to 13, uses stereotyped building blocks,
Affectors, to construct the differential equations,
and can expand that 4�1 grid to arbitrary size by
editing just two numbers in the input file.

Affectors represent the interactions between
Nodes. Each Affector encapsulates a formula
corresponding to a physical process involving one
or more Nodes. Each Node computes the rate of
change in its concentration (its time derivative) by
combining the values all its Affectors contribute.
Table 1 illustrates the four conceptual groups that
most of Ingeneue’s Affectors fall into. Some
Affectors govern synthetic processes such as
transcription and translation. A second group
governs non-specific first-order decay of each
molecule. A third group represents transforma-
tions of proteins from one form to another (via
reactions such as cleavage and hetero-dimeriza-
tion), some of which may be reversible. The fourth
group mediates exchange of molecules between
different compartments within and among cells.
Ingeneue currently includes approximately 60
Affectors (all in dimensionless form, as described
in the supplement to von Dassow et al., 2000;
future editions will include complementary di-
mensional-form building blocks) that we devel-
oped to construct our segment polarity and
neurogenic network models. These provide a
versatile, expanding basis for constructing models
of similar ‘‘resolution’’ and complexity to our
segment polarity model. Furthermore, it is a
simple Java programming task to create a new
Affector type, especially given the existing
library as exemplars. This is a key feature of our
design goals for Ingeneue: it should be easy for a
biologist possessing an acquaintance with the
mathematics and only a little familiarity with

Fig. 2 is on page 219

Fig. 2. Pieces of an Ingeneue model. (A) Ingeneue models
are made of Cells, Nodes, and Affectors. Cells are hexagonal
with one cytoplasmic compartment and six membrane
compartments. Cells are arranged in a grid, with each face
of a Cell in contact with a face of one of its neighbors. Cell faces
on the edges of the grid are wrapped around as if on a torus to
be in contact with ‘‘neighbors’’ on the opposite side of the grid.
All Cells contain identical copies of a network, where the
network is composed of Nodes (that is, molecular species; ovals
and polygons in middle panel) and Affectors (arrows in middle
panel, boxes in lower panel). The middle panel shows a subset
of the Nodes and Affectors from the segment polarity network.
Transcription of the wg mRNA produces an internal WG
protein pool (I-WG). This internal WG pool exocytoses onto
each face of the Cell (E-WG), from whence it can exchange to
the apposite faces of neighboring cells or to neighboring faces
of the same cell. Endocytosis transfers E-WG, at a rate
proportional to its concentration on each Cell face, to I-WG.
Combined, these exchange processes subsume, in different
regions of parameters space, autocrine, paracrine and juxta-
crine signaling, transcytosis, and even ‘‘free diffusion.’’ The
bottom panel shows the four Affectors that are summed
together to compute the time rate of change in I-WG
concentration. They represent, from left to right, translation
of I-WG from wg mRNA, exocytosis to the membrane,
endocytosis from the membrane, and non-specific decay. (B)
The ‘‘sheet-of-hexagons’’ approximation is not so unrealistic;
in many developing embryos, such as the neurula-stage
ascidian embryo shown here in a scanning electron micro-
graph provided by G. von Dassow, pattern formation takes
place in epithelial sheets in which the cells are roughly
hexagonally packed.

3
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Java programming to extend Ingeneue to accom-
modate a wide variety of similar gene network
modeling tasks.

For some processes we use Affector formulae
that represent the exact chemistry involved;
examples include first-order reactions like decay
and second-order reactions such as ligand binding.
In other instances we only approximate the literal
kinetic process. The most common approximation
we adopt is to use generic Hill-function-like
sigmoid curves to model how transcription factors
work. We digress a moment to explain that we use
approximations because we prefer formulae that
correspond to a biologist’s description of a gene
network quantified by parameters which, in
principle, biologists could measure experimen-
tally. For instance, in most contexts a biologist
explaining how a group of genes regulate each
other would not detail all the steps of transcription
factor binding and sequential assembly of the
generic transcriptional machinery. Instead she
would say things like, ‘‘Engrailed represses cubi-
tus interruptus transcription.’’ The details of how
it does so, even though they might be very
interesting, often remain unknown. What one
does know is that every target gene has some
maximal rate of transcription. That maximal rate,

determined by enzymatic properties of RNA
polymerase and by how suitable a template the
gene in question makes, provides one parameter
governing the synthesis rate function for that
gene. Saturation at a maximal rate implies that,
for every regulator, there is some regulator level at
which the target achieves one-half its maximal
synthesis rate. That half-maximal level provides
another parameter.

The functional form quantifying the dose–
response relation between a transcription factor
and the transcription rate it modulates must be
nonlinear if that rate saturates. The next practical
issue is, how sharply nonlinear is the dose–
response curve? Thus a third parameter deter-
mines the slope of the dose–response curve at the
half-maximal point. An inflected dose–response
curve could arise, for example, from cooperative
binding effects, with steeper curves resulting from
higher-order complex formation. This reasoning
led us to adopt the kind of curve and parameters
shown in Figure 3, combinations of which In-
geneue uses to model transcriptional regulatory
interactions and other dose–response relation-
ships. By neglecting to explicitly represent the
assembly of the generic transcriptional machinery
we assume that this process is not a rate-limiting

TABLE1. Ingeneue’s classes of a¡ectors1

A¡ector type Description Examples

Synthesis Transcription of mRNAs and
translation of mRNAs into proteins

To

Hx

Y �Yx

K�Yx
Yx þ Y �Yx

� �
To

Hx

A�Ax

K�Ax
Ax þ A�Ax

� �
1 � I�Ix

K�Ix
Ix þ I�Ix

� �

Decay First-order generic, nonspeci¢c decay
that (usually) a¡ects all Nodes.

� X

HX

Transformation Changes of one Node Into another,
e.g., cleavage, phosphorylation, dimerization, etc.

ToYo �kXþY!XYXYð Þ

� CYXX
To

HX

Y �YX

K�YX
YX þ Y �YX

� �

Transfer Various exchanges: of membrane-bound
Nodes among cell faces, between cells,
endo- and exocytosis, etc.

rflux of X Xopposite face � Xthis face

� �

1We combine each A¡ector’s formula into the right hand side of the ODE that speci¢es the time rate of change of a Node’s concentration. Under
‘‘Synthesis’’ the exhibited formulae confer transcription regulated by a single activator, and transcription regulated by a single activator and
single global repressor. An a¡ector from the ‘‘Decay’’category is usually added to every component of the model. Although Ingeneue never checks,
it is usually important to include a non-speci¢c decay term for every Node. Since this term is linearly dependent on the concentration of the Node,
and all synthetic processes should saturate to be biologically realistic, the decay term ensures a maximal steady state level for every Node. Under
‘‘Transformation’’ the ¢rst formula represents hetero-dimerization between X andY, while the second gives the rate of cleavage (or some other trans-
formation) of X regulated byY. Under ‘‘Transfer’’ the exhibited formula confers exchange between the apposite faces of two neighboring cells. In fact
this formula is represented by an obligate pair of A¡ectors, thus maintaining a one-to-one relationship between A¡ectors and additive terms in the
ODE. See the Supplement to von Dassow et al. (2000) for a rationalization of the formulas used and the non-dimensionalization scheme.
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step. The major constraint we maintain is that all
transcription must saturate at some maximal
level; thus we never use linear or strictly additive
formulas. But we emphasize that Ingeneue itself
enforces no constraints whatever on an Affector’s
formula, so others could make different choices.2

The most mathematically complex Affectors are
those governing transcription. This reflects the
inherent complexity of the transcription process.
Multiple transcription factors activate/inhibit
most enhancer regions through detailed interac-
tions we do not know. As explored further in
Appendix A, various nested or multiplicative
combinations of sigmoid dose–response curves like
Figure 3 accommodate most of the possibilities for
simple relationships between regulators and tar-
gets. In cases where only a single activator acts on
a target gene, we use the simple parametrized
sigmoid function in Figure 3 to quantify the
transcription rate. To add a single inhibitor we
might choose to multiply the activation function
by one minus a similar function (Table 1). Even in
such a simple one activator/one inhibitor case we
necessarily make assumptions about the physical
mechanism of inhibition. With multiple activators
and inhibitors, the potential combinations get
even more complicated. Ingeneue presently in-
cludes the rudiments of a flexible system using
‘‘meta-affectors’’ that add and multiply together
simple activation and inhibition formulas while
still preserving an overall maximum transcription
rate for the target gene.

Partitioning the equations for a network model
into stereotyped, reusable function fragments is
another major advantage of using Ingeneue for
modeling genetic networks. The Affectors consti-
tute a parts kit for translating the cross-regulatory
connections in a typical network diagram, such as
Figure 1, into a set of ODEs representing those
connections mathematically. This tactic enables
users to build and modify a network model
without needing to derive equations themselves
for each case. (Nevertheless, it is vital that users
understand the generic nature of the kinds of
ODEs that Ingeneue uses and understand how
each choice differs mechanistically.) This tactic
also greatly speeds up the process of changing
network topologies, even for mathematically so-
phisticated users.

Fig. 3. Standard dose–response curve. This S-shaped
curve, a graph of the key term in the differential equation
shown above, is a fundamental approximation for regulatory
relationships in Ingeneue. The equation in this figure is a
simple case in which synthesis of X is promoted by Y, and X
degrades non-specifically. The curve represents the rate of
synthesis of X as a function of Y, absent decay. A salient
feature is that at high activator concentration, the response
saturates at some maximal value, determined by the proper-
ties of the biosynthetic machinery (e.g., RNA polymerase). It
follows that at some intermediate activator concentration (KY)
the response reaches half its maximal value. Throughout,
when we use the word ‘‘cooperativity’’ we are really referring
to the steepness of the curve at the inflection point (since such
an inflection could be produced by cooperative interactions
among activator molecules). The thumbnail curves show
identically scaled versions with the cooperativity equal to
1.0, 4.0, and 10.0. With a cooperativity of 1.0 (that is, no
cooperativity) the dose–response curve is nearly linear at low
regulator concentrations, has no inflection, and saturates
more slowly than corresponding curves with higher n. With a
cooperativity above 10.0 or so, the curve is nearly a step
function. In Ingeneue models the half-maximal activation
value and the cooperativity become free parameters of this
formula, but the equations are normalized and rendered
dimensionless such that, for processes like transcription, the
maximal rate is 1.0. An inhibitory dose–response curve is thus
obtained by subtracting a formula for the curve shown from
1.0. Complicated terms, such as would govern transcriptional
regulation by several factors, are obtained by nesting, adding,
and multiplying these curves in various combinations deter-
mined by the mechanism in question.

2Since there is an infinitude of monotone-increasing functions
having a given maximum, a given half-maximal point, and a given
slope there, we do not believe that it is worthwhile to distinguish them.
Convenience and tradition dictated the choice of a Hill function, but
Ingeneue would just as happily integrate anything else.
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Creating a model of a gene network using
Ingeneue thus consists of specifying the Nodes,
Affectors, and the size and geometry of the Cell
array. In order to do anything with that topology
one must assign values to all the Affectors’
parameters and to the initial concentrations of
each Node in each Cell. Then Ingeneue ‘‘runs’’ the
model by integrating the equations over a user-
specified time interval. Running the model pro-
duces dynamic behavior, visible on the computer
screen as well as measurable within the program’s
guts, which we generally want to compare to gene
expression patterns in the real biological system.
The network’s behavior, and the final state that
the pattern may approach after long times (if such
a state exists), depend on all the model’s ingre-
dients and initial conditions. This behavior may be
sensitive to any particular ingredient, or may
hardly be sensitive to any of them, and clearly
could depend a great deal on governing parameter
values. We now describe some of Ingeneue’s tools
for exploring those dependencies.

WANDERING THROUGH
HIGH-DIMENSIONAL PARAMETER
SPACE SEEKING ZONES IN WHICH

MODEL NETWORKS EMULATE
REAL NETWORKS

In the classical context of genetics, each gene’s
effects on phenotype characterize its function; one
function of wingless, for instance, is to specify
regions of naked cuticle in each segment during
embryogenesis. In the context of molecular genet-
ics, gene function means how the gene product
interacts with other genes and their products
within some pathway or program. That is, the
function of wingless is to respond to certain intra-
and inter-cellular signals and transmit them to
certain targets. How does one ascribe a function to
a network of genes? Going from individual genes
to networks, it seems sensible to try abstracting
functional ‘‘behaviors,’’ much as one would do to
comprehend integrated circuit chips. One function
of the segment polarity network is to do a certain
task, and the question is, what task?3

A simplistic description of the segment polarity
network’s task in early Drosophila development is
to sharpen initial condition cues, conferred by the
transiently-expressed pair rule genes, into the
parasegmental boundaries, and then maintain
these boundaries (in a subset of the animal)

throughout development. The boundaries are
defined by expression of the network’s constituent
genes in a particular stable spatial pattern.
Another way of saying this is that if somehow we
could make a naı̈ve field of cells capable of
expressing only the segment polarity genes (and
all the generic machinery for basic cell function),
and if somehow we could provide an initial pre-
pattern equivalent to the input they usually get
from pair-rule genes, we would expect this net-
work to stably maintain an asymmetric spatial
regime of gene expression. That, we propose, is the
function of this network. Ingeneue allows one to
do this experiment in silice.4 One can reconstitute
a working circuit from the parts list deciphered by
molecular geneticists and inquire whether that
circuit indeed does the task it is supposed to do.
Incidentally, we find the abstraction of a net-
work’s functional task one of the most difficult
(and most critically vulnerable) parts of the entire
modeling process. Given a group of genes that
interact, how are we to characterize what it is that
they do, and which aspects of what they are
observed to do, are the important aspects?

No matter how difficult it is to deduce the
function of a specific network, that function
usually abstracts to some dynamical behavior,
such as producing a pattern of gene expression in
time, space, or both. The spatiotemporal pattern
that emerges depends not only on the network’s
topology but also on the values of parameters in
the model and on the initial conditions. These
parameters quantify the shapes and strengths of
the network’s connections by specifying biochem-
ical reaction rates for translation, degradation,
dimerization, and so on. Exploring how a net-
work’s behavior may (or may not) change as
parameter values change is the central, inescap-
able task of all gene network modelers (until
actual values for all the parameters have been
measuredFthus, realistically, forever or at least
until all authors of this paper have passed away).
Even the simplest realistic networks involve
extravagant numbers of parameters (48 in Fig.
1). This is not a calamity caused by mathematical

3Of course the same network may have other functions at different
developmental stages, or in a different organism.

4The term ‘‘in silico’’ has become commonplace in the last several
years, but after we used it in von Dassow et al. (2000), Reed A.
Cartwright wrote us as follows:

‘‘I would like to point out an error in your paper. You used the term
‘‘in silico’’ to compare computational simulations to that of life (in
vivo) and laboratory (in vitro). However, you have made a mistake in
your Latin. Silicon comes from the Latin word silex which means
‘‘hard stone.’’ Unlike vivus and vitrum which are second declention
nouns, silex is a third declention noun, and thus its ablative singular is
silice. And since ‘‘in’’ takes the ablative, the correct phrase for ‘‘in
stone’’ would be in silice and not in silico.’’
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modeling, but a fact of nature, a fact which
mathematicians cannot but sin to gloss over. For
much simpler networks than Figure 1 it is possible
to exhaustively catalog a network’s behavior
across all biologically realistic parameter combina-
tions, but this is out of the question for almost
anything interesting. If we assign each parameter
either a high, medium, or low value, it would
require roughly 348, or E8� 1022, samples to try
every possible combination in the segment polar-
ity network. Waiting (e.g., for AMD to release the
Athlon XII) will never make it realistic to do a
tenth of a mole of simulation runs. Our labor-
atory’s existing computers could perform the
necessary calculations in 1014 years. So, since
exhaustive exploration is right out, one has
roughly four choices:

K Use mathematical strategies for dealing with
large parameter spaces, such as non-linear opti-
mization techniques that start from a guessed set
of parameter values and search iteratively for
nearby parameter values that better match the
target behavior;

K Constrain the problem using empirical informa-
tion, such as the knowledge that transcription
factor X is a potent activator of gene y but a poor
activator of gene z, or that protein A is much more
rapidly degraded than protein B;

K Intuit what values will make the network perform
its ‘‘function’’;

K Depend upon the luck to model a network whose
connection topology, we presume, natural selec-
tion has optimized over deep time to have the

mysterious property that it is trivially easy to
find, by accident, sets of parameter values that
confer the desired behavior on the network.

We confess to relying primarily, though not
exclusively, on the fourth option, after discovering
this unforeseen but happy possibility. As men-
tioned above, for the segment polarity network
model we were able to find ‘‘good’’ parameter sets
that caused the network to make a reasonable
match to Figure 1B merely by randomly choosing
values for each parameter. Naming mathematical
parameters that confer shape and strength on
network connections, then seeking ‘‘good’’ values
for them, may seem artificial mumbo jumbo with
which mathematical modelers merely confuse an
already difficult problem. But it is not so: regard-
less of what jargon one uses to describe the
formidable task of navigating high-dimensional
parameter spaces, performing that task is the
likely operation of evolution by natural selection.

The classes of parameters in a network model
depend on the types of equations used. Table 2
shows the classes of parameters (all dimension-
less) appearing in our segment polarity models.
We have tried to ensure all parameters in our
models are, at least in principle, measurable
quantities. It follows that the parameters are thus
physically intuitive quantities, for instance the
rate at which each component decays over time or
the concentration at which a transcriptional
activator half-maximally turns on transcription.
In each model, we set bounds on the realistic
range of each parameter. Where available, we used

TABLE 2. Common classes of parameters1

ParameterType Symbol Description

Half-maximal activity KYx Dimensionless concentration of a Node at which it half-maximally
activates or inhibits some process.

Cooperativity (or Hill) coe⁄cient nYx Exponent that determines how separately the rate of some process
changes as some regulator Node increases (i.e., how S-shaped the dose^
response curve is).

Half-life HX Time constant for nonspeci¢c degradation of each Node (half-
life¼ln(2)ntime constant).

Maximal rate CX, VYX, etc. Miscellaneous rates, e.g., for a cleavage reaction, equivalent toVmax for an
enzyme.

Maximal concentration Xo The maximum dimensional concentration that a Node can achieve at a
steady state.This parameter is required chie£y in heterodimerization
reactions.

Exchange rate r Rates at which transfer process equilibrateNode concentrations between
various compartments.

Activation strength a The relative strengths of di¡erent activators and inhibitors in complex
enhancer regions.

1See the Supplement to von Dassow et al. (2000) for a more extensive discussion.
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published values as guides to the general range
and then expanded bounds to span the smallest
and largest biologically reasonable values. As an
example, in exploring the segment polarity net-
work we let what we call ‘‘half-lives’’ (the
degradation time constants, actually) vary be-
tween 5 and 100 min. We considered it unlikely
that these molecules were degraded much more
rapidly than with a 5-min time constant (corre-
sponding to a half-life of about 3 min, about what
has been measured for ftz mRNA; Edgar et al.,
’86). At the upper end, the segment polarity
pattern forms over the course of hours or less, so
the gene products involved must degrade fast
enough to change on that time scale. We thus set
the upper limit on degradation time constants at
100 min. Published measurements of half-lives in
the segmentation network all fall within this
range: Engrailed protein has a half-life of
o15 min (Weir et al., ’88); Armadillo protein
(involved in segmentation though not explicitly
represented in the model discussed here) has a
half-life of around 12 min (Pai et al., ’97); Cubitus
interruptus protein, in cultured cells, has a half-
life of 75 min (Aza-Blanc et al., ’97).

Automating the search for ‘‘working’’ sets of
parameter values requires a goodness-of-fit func-
tion which we craft to assess how close the
network, with each trial parameter set, comes to
matching the target behavior. Pattern matching is
currently the weakest part of Ingeneue in terms of
making a program that can be used by biologists
without additional customization, and we do not
yet have a full solution. Presently the user must
custom-code their own pattern recognizer if those
we supply do not suit the task. It is much less clear
in the case of pattern recognition than it is for the
Affectors what the primitive unit for general
applications should be, so to date we have supplied
very few. The general strategy in Ingeneue is to
allow the user to assemble, from a library of
primitive parts or by custom coding, so-called
‘‘StoppingCondition’’ objects. StoppingCondition
objects monitor the progress of the integration run
and return a scalar score measuring how well the
run conforms to some ideal behavior, and they can
be set up to suspend the run if it is pointless to
continue further (i.e., if either the network has
already conformed well enough to the ideal
behavior, or if it is clear that it will never conform,
say, because it has achieved some alternate stable
state). Our current StoppingConditions can look
for primitive behaviors such as ‘‘Node X on in Cell
1,’’ ‘‘Node X off in Cell 2,’’ and ‘‘Node Y oscillating

in Cell 3.’’ We then combine several StoppingCon-
ditions together to recognize more complex pat-
terns.

For example, the target pattern for the segment
polarity network is a set of vertical stripes: a stripe
of en in the first column of each parasegmental
repeat, a stripe of wg in the fourth column, a stripe
of hh where en is on, and so on. Our pattern
recognizer function for the segment polarity net-
work is thus a group of several StoppingCondi-
tions that recognize stripes. Together these assess
whether the model achieves the correct on/off
pattern of wg, en, and hh, in the desired positions
and in a sufficiently short time (see Supplement to
von Dassow et al., 2000). The stripe recognizer
returns a better (lower) score as the difference
between the concentrations within that column
and in neighboring columns grows larger, and its
score also improves if the concentration within the
column is stable over time. We laboriously hand-
tuned the exact recipe for the segment polarity
model’s pattern recognizer function until it caught
only the parameter sets we wanted. We doubt that
we will ever be able to eliminate the need for such
hand-tuning, but the challenge for future devel-
opment of this aspect of Ingeneue is to incorporate
a versatile library of pattern recognizer modules
that allow one to avoid custom coding for most
applications.

Given a function that scores patterns, Ingeneue
can automatically search parameter space for sets
of parameter values that produce that pattern
(i.e., that achieve a sufficiently low value of the
‘‘objective function’’ which measures distance
away from the ideal pattern). This is another
major advantage of using Ingeneue to build and
analyze gene network models. The basic frame-
work for automated searching is a collection of
‘‘Iterator’’ objects. We have been rather surprised
to find that so far, for several different cases, the
most useful algorithm has been random sampling
of parameters from within biologically realistic
ranges of parameter values. Other Iterators
implement various algorithms for navigating the
landscape in parameter space, including a variety
of standard and custom-made nonlinear optimiza-
tion schemes. Because most of our work to date
has, fortuitously or otherwise, allowed us to take
the most simple-minded of approaches, we have
yet to explore thoroughly the effectiveness of
various sophisticated strategies for searching
parameter space. We expect, however, that since
these network models all use similar equations,
it should be possible to identify which search
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algorithms work best on this whole class of
models. Once (or if) one finds sets of parameter
values for which the model works, the Iterator
framework enables automated sensitivity tests.
For example, Figure 3 of von Dassow et al. (2000)
was made using the ‘‘TransectIterator’’ object,
which, starting with an input parameter set,
simply scans along the entire range of one or
more parameters while keeping all other para-
meter’s values fixed and records the score at each
point. Again, Ingeneue’s design allows one to add,
as a drop-in module, any stratagem one wants to
try.

USING INGENEUE WITH A MOUSE

Ingeneue records its results automatically in a
text file, and the Ingeneue core described above
can run on its own, without a graphical display,
simply based on text file input specified in a Unix
command line. This is useful for running Ingeneue
remotely, once one has developed a reliable
pattern recognition function and devised a strat-
egy for searching parameter space. When starting
a new task with the program, though, it is vital
to see the dynamics of the model as it runs. This
develops the user’s intuition about the model, lets
the user fine-tune automated strategies, and helps
to catch mistakes. Guided by these needs, Inge-
neue provides a simple graphical interface for
making certain kinds of changes to the model
(for instance, changing parameters and initial
conditions, but not yet the topology of network
connections), and viewing the concentrations of
any Node in any Cell as a model runs.

Ingeneue has four main windows in addition to
the console (Fig. 4). The Cell View (upper middle)
shows color-coded concentrations of different
Nodes within each Cell in the model. Clicking on
one of the hexagons representing an individual
Cell brings up an Inspector window that shows a
numerical display of the concentration of that
Node in that Cell. The user can change the current
and initial concentrations of any Node in any
Cell. On the upper left is the Network View, which
displays the topology of the currently loaded
network. Different shapes correspond to different
types of Nodes (mRNA, protein, protein complex,
etc.), and the lines indicate which Nodes influence
each other through Affector objects. For instance,
the line from en to EN represents the EN
translation Affector. Clicking on the circle within
this line causes the Inspector window to show a
list of the parameters that appear in that

Affector’s formula and allows the user to change
the parameter values arbitrarily.

The segment polarity model has too many
parameters to view entire sets using standard
graphs, yet it is very useful to compare different
parameter sets visually. To display multiple para-
meter sets, each containing dozens of parameters,
we use ‘‘wheel’’ plots where each parameter set is
displayed as an irregular polygon intersecting the
many spokes of a wheel (Fig. 5). Each spoke
represents the axis along which we allow an
individual parameter to vary. The inner circle
defines the minimum and the outside circle the
maximum possible value. Thus a single polygon,
intersecting one point on each spoke, represents a
set of parameter values. Figure 5 shows an
example of a wheel plot of seven different para-
meter sets, each of which confers upon the
segment polarity network the ability to pass our
most basic functional test. Buttons and menu
choices in the wheel plot window (top right of Fig.
4) allow the user to flip quickly through many
parameter sets and impose any of them on the
currently loaded model. This window also allows
one to calculate simple statistics (standard devia-
tions, cross-correlation coefficients, etc.) from a
group of parameter sets. We continue to develop
methods to make sense of the parameter space; for
instance, an ancillary program (‘‘Gatherer’’;
Odell, unpublished observations) allows us to look
for ‘‘clusters’’ of related parameter sets within the
larger group found in a random sample.

EXAMPLE EXPLORATIONS USING
INGENEUE

Above we highlighted three major advantages of
using Ingeneue to model gene networks instead of
general-purpose mathematics software: 1) Inge-
neue handles the busy-work of stamping out
copies of the gene network template into each cell
in an arbitrary-sized field of cells; 2) Ingeneue
allows one to construct equations from stereo-
typed building blocks; 3) Ingeneue facilitates
automated searches through parameter space,
sensitivity analyses, and similar tasks. All these
combine to make possible a fourth major advan-
tage, which is that Ingeneue makes it easy for the
user to systematically test the effect of changing the
parameters, architecture, and components of gene
network models. To illustrate these advantages
we give three short examples below. In the
first example we look at how the rate of diffusion
of secreted signals affects the ability of the
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segment polarity network to produce the pattern
in Fig 1B. In the second example we ask the same
question but with respect to the degree of
‘‘cooperativity’’ in regulatory interactions in the
network. Finally we illustrate how the segment
polarity module really consists of two sub-mod-
ules.

Sensitivity of the segment polarity model
to diffusion rates

There is a long-standing controversy concerning
the role diffusion plays in developmental pattern
formation. It has proven difficult to demonstrate
conclusively that diffusion gradients of proteins

actually exist, or that these gradients affect
patterning. In part, this experimental quest to
find diffusing molecules was driven by a body of
mathematical theory that assumed diffusion of
molecules was centrally important in patterning
(Slack, ’83; summarized in Murray, ’93). The
theory is based on Turing’s idea of reactions
among competing proteins that diffuse at different
rates. Depending on the types and rates of the
reactions and the rates of diffusion, various simple
models can exhibit interesting pattern-forming
behaviors. One of the primary difficulties with
these so-called reaction–diffusion mechanisms,
however, is that they generally require careful
tuning of relative reaction rates versus the

Fig. 4. Ingeneue interface. Screen snapshot showing the
main windows in Ingeneue’s interface. The top left window
shows the Nodes and Affectors in the segment polarity
network. Clicking on one of these nodes brings up the
Inspector window below, which allows the user to inspect
and change concentrations of any Node in any Cell and to

change parameter values for any Affector. In the middle is the
Cell View window, which graphically shows the concentrations
of a user-selected set of Nodes in each of the Cells in the
model. The top right window displays a battery of parameter
sets on a wheel plot and allows the user to impose one set at a
time on the currently-loaded network (see Fig. 5).
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diffusion rates. In particular, the ‘‘wavelength’’ of
the patterns made by reaction–diffusion mechan-
isms is highly sensitive to the rates at which
various factors diffuse across the simulated field.

Several recent studies demonstrate that devel-
opmentally important molecules do indeed diffuse
from their site of synthesis, and that the concen-
tration gradients thus established play a role in
patterning (see for example Gurdon et al., ’94, and
Nellen et al., ’96). Two of the segment polarity
network components, Wingless and Hedgehog, are
secreted proteins that potentially spread through
the embryonic epidermis by diffusion (or even by
convection or active transport of some kind).
However, we do not know if diffusion of these
signals influences the segment polarity network’s
function in vivo. Both Wg and Hh transport are
carefully regulated in fly embryos. There is
substantial evidence that during embryogenesis

the primary means by which Wg travels from cell
to cell is an active transport mechanism involving
endocytic uptake (Dierick and Bejsovec, ’98; Mo-
line et al., ’99; Pfeiffer and Vincent, ’99), and it
remains unclear to what extent (if any) the
appearance of Wg protein far from its site of
synthesis is due to genuine extracellular diffusion.
Hh is synthesized as a transmembrane precursor
and undergoes autolytic processing to a cholester-
ol-tethered form whose cell-to-cell transport may
be mediated by other regulators, such as Patched
and Dispatched (Burke et al., ’99). This suggests
that Hh transport might be under tight control
in vivo, but introduction of a freely diffusible Hh
has only subtle effects on embryogenesis (Porter
et al., ’96).

During our initial work with the segment
polarity model we allowed the Wingless ‘‘diffu-
sion’’ rate to vary over a wide range, from values

Fig. 5. Wheel plot. Wheel plots exhibit multiple parameter
sets, each comprising dozens of parameters. Each spoke is the
axis (log or linear scale, as chosen by the user) for one of the 48
parameters in the model. The inner circle represents the
minimum value in each parameter’s range, and the outer
circle represents the maximum value. Thus one parameter set
is represented by a single irregular polygon with a vertex on
each spoke of the wheel. The dashed polygon is one parameter

set that was successful at forming the segment polarity
pattern. The other six polygons show other successful
parameter sets. Notice that each of these has very different
parameter values from the others. By plotting many para-
meter sets on top of each other, one can get an idea of whether
one or another parameter’s values are clustered in one part of
its range.
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that allow essentially no transport (on the time
scale of the simulation) to values at which
extracellular Wingless concentrations rapidly
equilibrate across the cell field. In addition, exo-
and endocytosis together mediate ‘‘transcytosis’’
of Wg. In our original model we did not allow
Hedgehog to move from cell to cell at all. In light of
recent reports on Wg and Hh traffic, we tested
whether cell-to-cell transport of either Wg and/or
Hh affects the basic pattern-maintaining function
of the segment polarity model. In the original
model, with a wide range for the Wg diffusion rate,
we found that E1 in 200 randomly chosen
parameter sets conferred on the network the
ability to make and hold the pattern in Figure
1B. We now restrict the range of the Wg diffusion
rate to slow, intermediate, or fast sub-ranges,
while still picking all other parameters from the
same ranges as before. The overall result is that
neither fast nor intermediate nor slow Wg diffu-
sion greatly affects the ability of the network to
pass the test (Table 3). For all Wg diffusion rates,
random sampling yields one ‘‘working’’ parameter
set for every few hundred sampled sets. There is,
however, a definite increase in the hit rate when
we constrain the Wg diffusion rate to the slow end
of its range. Thus, the less freely Wg diffuses the
more tolerant the model is to variations of other
parameters. To look for mutual constraints among
parameters we can examine how a constraint
enforced on one parameter affects the distribution
of values for others. In this case we found that the
rates of Wg exo- and endocytosis exhibit tradeoffs
relative to Wg cell-surface-to-surface flux rate (see
companion paper by von Dassow and Odell, 2002,
this issue). In contrast, allowing Hh to travel from
cell to cell, quickly or slowly, seems to make
almost no difference at all to the ability of the
network to achieve the target pattern (Table 3).
The important point is that, despite the subtle

sensitivity we show to Wg flux rates, vast changes
in those rates have no effect on the ‘‘wavelength’’
of the pattern formed. Indeed, unlike reaction–
diffusion mechanisms, the segment polarity model
has no intrinsic wavelength at all, and the
periodicity of its pattern (when it makes the right
pattern, that is) is controlled solely by initial
conditions; adjacent boundary regions simply do
not depend on one another.

Cooperativity as a determinant for
robustness in switching networks

Although diffusion rates seem to have only a
small effect on the basic function of the segment
polarity model, the same cannot be said for the
steepness of dose–response curves (see Fig. 3),
which we call ‘‘cooperativity,’’ in regulatory
interactions. We can get a rough idea for the role
of cooperativity in this model by fixing every
cooperativity coefficient in the model at a single
value, either all together or in turn, as shown in
Tables 4 and 5. If all regulatory interactions are
constrained to be non-cooperative, we can find no
parameter sets for which the model works. As the
uniform cooperativity level increases (Table 4),
the hit rate increases but plateaus above about 5.0.
However, when we hold each individual coopera-
tivity coefficient to 1.0 in turn and allow the others
to vary freely, only one of these parameters (the
cooperativity coefficient for wingless autoactiva-
tion) is absolutely required to be greater than 1.0
(Table 5).5 All the other cooperativity coefficients

TABLE 3. Frequency of solutions as a function of various exchange/£ux processes1

Constraint No. of hits No. tries Avg. score Hit rate

Standard ranges 1,120 235,875 0.077 1 in 211
WG di¡usion fast: rMxferWG [0.1^1.0] 1,033 405,394 0.077 1 in 392
WG di¡usion moderate: rMxferWG [0.01^0.1] 1,811 416,824 0.075 1 in 230
WG di¡usion slow: rMxferWG [0.001^0.01] 1,804 237,877 0.075 1 in 132
WG intramembrane di¡usion, endocytosis slow: rLMxferWG rEndoWG [0.001^0.01] 1,618 243,875 0.073 1 in 151
HH allowed to di¡use rMxferHH [0.001^1.0] 1,197 237,572 0.075 1 in 198

1The proportion of randomly chosen parameter sets withwhich our segment polarity model (Fig. 1A) produced the correct segment polarity pattern
(Fig. 1B) when the di¡usion rates ofWGandHHwere constrained. Each try started from an initial condition of a stripe of wg and a stripe of en (von
Dassow et al., 2000) and had to acquire the target pattern within 200min and be stable over 1,000min in order to count as a success.The standard
ranges we use for comparisons allow theWG di¡usion andWG endocytosis parameters to vary between 0.001 and 1.0 and do not allow any di¡usion
of HH.

5Note that 48-dimensional parameter space is so vast that our
failure to find any working parameter sets does not mean no such set
exists. Far from it. Even if one in a billion random sets succeeded, one
would conclude the network was far more robust than the best
electronic circuits. However, considering the role that wingless
autoregulation plays in the segment polarity network, and given the
formula we used for wg transcription (see von Dassow et al., 2000, and
the companion paper by von Dassow and Odell, 2002, this issue), it is
clear that this interaction must be cooperative; otherwise it would be
impossible for there to exist two stable levels of wg expression.
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can be constrained, individually, to 1.0 without
greatly affecting the hit rate, and indeed the hit
rate actually improves when certain interactions
are forced to be non-cooperative. In this context
we note that the most intensively studied enhan-
cer regions tend to have multiple binding sites for
important activators and inhibitors (e.g., Arnosti
et al., ’96; La Rosee et al., ’97). These sites interact
in various ways, perhaps leading to the phenom-
enon that we call ‘‘cooperativity,’’ that is, the
sigmoid shape of the dose–response curve. In some
cases, such as the targets of Bicoid (Driever et al.,

’89; Struhl et al., ’89) and the phage lambda
repressor (Ptashne, ’92), this effect has been
confirmed to be due directly to the nature and
number of binding sites.

The effect of cooperativity on the robustness of
the segment polarity network is particularly
interesting from an evolutionary point of view.
As Gibson has noted elsewhere, cooperativity
could be a generic means of achieving canalization
(Gibson, ’96; see Gibson and Wagner, 2000, for an
informative review of canalization). Robustness to
parameter variation is, more or less, canalization
against genetic variation, albeit from a different
point of view. How hard can it be, evolutionarily,
to modulate the steepness of cooperative tran-
scriptional regulation? We do not know for sure,
but taking the work on Bicoid as an example
(Driever et al., ’89; Struhl et al., ’89; reviewed in
Driever, ’93), it seems not hard at all. Point
mutations in Bicoid binding sites in the hunchback
enhancer region, by changing the binding affinity
at that site, alter the dose–response profile as
visualized by levels of hunchback expression along
the anterior–posterior axis of the egg. Adding or
removing binding sites has a more dramatic effect,
and the natural targets of Bicoid differ in the
number and affinity of binding sites in a way that
corresponds to their expression profile. Assuming
this case is paradigmatic, the effect we describe in
the previous paragraph means that the segment
polarity network incorporates tuning dials for
robustness. Should the segment polarity network
have been ‘‘invented’’ lacking cooperativity, and
therefore lacking robustness as well, it may have
been a relatively trivial path for the evolutionary
process to tune it up. Should cooperativity prove a
generic determinant of robustness, as suggested
by Gibson and supported here, the implications
would be profound.

Segment polarity network consists
of two sub-modules

We have often wondered where the segment
polarity network came from; that is, how did
natural selection hit upon such a remarkably
robust design? As described in the companion
paper, when we try to concoct networks that can
perform the same task, we have a hard time of it.
What could nature have started with? The
segment polarity network consists of two cell–cell
signals: Wg activates itself via a poorly understood
mechanism and also activates en in neighboring
cells; Hh regulates the relative abundance of

TABLE 4. Frequency of solutions as a function of global level
of non-linearity1

All n constrained to No. of hits No. of tries Hit rate

n range 2^10 1,192 240,000 1 in 201
n range 1^10 1,316 320,806 1 in 244
1 0 40,467 Never
1.3 0 38,559 Never
1.7 4 37,180 1 in 9,295
2 23 37,424 1 in 1,627
3 82 36,545 1 in 446
4 91 24,684 1 in 271
5 137 32,775 1 in 239
6 195 32,908 1 in 169
7 351 57,111 1 in 163
8 199 29,054 1 in 146
9 287 37,587 1 in 131
10 140 17,721 1 in 127

1The proportion of randomly chosen parameter sets where the segment
polarity model (Fig. 1A) produced the segment polarity pattern (Fig. 1B)
when all cooperativity parameters were constrained to a single value.
Tests were done as in Table 3. Separately we sampled over 400,000 para-
meter sets with all cooperativities set to 1 and found no sets that
worked.

TABLE 5. Frequency of solutions as a function of level of non-line-
arity in particular regulatory interactions1

No. of hits No. of tries Hit rate

n 2^10 1,192 240,000 1 in 201
n constrained to 1 0 49,250 Never
nWGen 173 37,734 1 in 218
nCNen 73 41,236 1 in 565
nWGwg 0 42,708 Never
nCIDwg 80 28,416 1 in 355
nCNwg 138 40,351 1 in 292
nCIDptc 228 40,143 1 in 176
nCNptc 265 39,079 1 in 147
nENcid 32 45,612 1 in 1,425
nENhh 185 42,667 1 in 230
nCNhh 141 39,755 1 in 282
nPTCCID 271 39,748 1 in 147

1All tests as described inTables 3 and 4.
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activator and repressor forms of Ci, which in turn
regulates various target genes, in particular the
Hh-binding component of the Hh receptor com-
plex, ptc. These two signals are sewn together into
a larger mechanism by the facts that En regulates
hh expression, and Ci regulates wg (see Fig. 1).
The larger mechanism, with a few more connec-
tions, is capable of maintaining asymmetric
boundaries with three cell states: a ground state
in which neither signal is expressed and two co-
dependent cell states in which either wg or en/hh
is expressed. This is the function we test the
segment polarity models for. The hh-ptc-ci sub-
network, by itself, cannot do this: the closest it
comes is to make ‘‘center-surround’’ patterns in
which a central cell expresses hh, nearby cells
express Ci targets such as ptc, and distant cells
express only the repressor form of Ci, CN. In order
for this sub-network to do this, there must be 1)
a constant input to hh in some cells and 2)
constitutive expression of ci in all cells. Indeed,
the hh-ci-ptc network is put to exactly this use
in a bewildering diversity of vertebrate tissues,
including hair follicles, limb buds, and tooth
primordia, to name only a few (Goodrich et al.,
’96; Marigo et al., ’96).

The other sub-network, consisting of an auto-
regulating wg gene and Wg-dependent en, also can
make center-surround patterns under certain
conditions but cannot, as represented in our
original model, maintain asymmetric boundaries.
Thus we concluded that the network in Figure 1
was a ‘‘minimal’’ reconstitution of the segment
polarity module. However, we continued to won-
der if there might be a way to get a simpler subset
of the known interactions among segment polarity
genes to do the job. The sloppy-paired gene is a
good candidate for an intermediary in wg auto-
regulation (Grossniklaus et al., ’92; Cadigan et al.,
’94a,b; Bhat et al., 2000; Lee and Frasch, 2000; see
companion paper by von Dassow and Odell, 2002,
this issue). slp encodes a transcriptional regulator
that activates wg and represses en. At the same
time, Wg promotes slp expression. It seemed to us
that, if en also inhibits slp, an slp-wg positive
regulatory loop, coupled to a slp-en mutually
negative loop, as shown in Figure 6A, ought to
be able to do the same task that the larger network
does. We challenged such a model, and, after much
trial and error, found that, under finely tuned
conditions, it could do so if the initial pre-pattern
is rigidly specified, as in Figure 6B (without initial
high-level slp and SLP in the wg-expressing cells
and the blip of initial slp and SLP in the first cell

in each repeat, not too much and not too little,
solutions are too scarce to find in a random
sample). Even then, however, this network is
much more sensitive than the network in Figure
1 to many of the governing parameters. Figure 6C
shows that some parameters are tightly con-
strained to certain ranges of values. Furthermore,
not apparent from the drunken-spider plot
but obvious from histograms of the same values
(Fig. 6D), about one-half of the parameters are
biased toward some cluster of values. Also,
compared to the larger network, the wg-slp-en
network is more sensitive to the choice of initial
conditions, and to details of how the component
genes interact; in comparison to the larger
structure, this little fragment is a pale wisp of a
network indeed.

Thus, the wg-slp-en sub-network can do the
same task as the larger network in which is it
embedded, but it does so without nearly the
robustness characteristic of the larger design. We
indulge in the following speculation: perhaps this
tiny, (relatively) fragile protomodule might have
been an evolutionary precursor to the segment
polarity network we know today in Drosophila.
Indeed, perhaps there are unlucky arthropods out
there today struggling to get by with such a
primitive boundary maker. Perhaps the hh-ci-ptc
circuit was originally a subsidiary process in
segmentation, with hh a downstream target of
En. If some enterprising Ur-arthropod, maybe
even an insect, happened to manage to invent a
connection between Ci and wg, the device shown
in Figure 1 would have been born and might have
loosened constraints on the variation of certain
segmentation genes. If some descendent managed,
further, to connect CN to en, the robustness of the
network (to variation in parameters, initial condi-
tions, and even structure) would have increased
further still. We know, as yet, very little about the
conservation of the segment polarity network
among arthropods. It would be fascinating to
know if such a scenario might even be traced
among the arthropods living today!

DISCUSSION

Ingeneue is an early entrant in what is sure to
become a whole breed of software for dealing with
large tangles of molecular genetic data as net-
works, circuits, and systems. Because our knowl-
edge of how genetic regulatory systems operate is
advancing so rapidly, computer tools that help
integrate and interpret these data will soon
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Fig. 6. Wg-Slp-En sub-module. (A) Network
diagram summarizing known facts about the inter-
connections of wg, slp, and en. Slp represses en
transcription and promotes wg transcription; Wg
promotes both en and slp transcription; En represses
slp transcription. The last link we have seen
described on a poster (M. Kobayashi et al., ’98,
40th Annual Drosophila Research Conference, Ab-
stract 184C) but not in final publication. In our
model of this circuit we have made the assumption
that in each Cell the Nodes en and slp are sensitive to
WG bound to that Cell’s surface; that is, WG must
move from one Cell to another to affect its targets in
Cells where WG is not produced. This kind of detail
is relatively insignificant to the standard segment
polarity network model (Fig. 1A; see companion
paper by von Dassow and Odell, 2002, this issue, for
analysis), but significantly affects the behavior of this
sub-circuit. (B) Initial conditions required by the
Wg-Slp-En sub-module. Each plot shows eight Cells’
worth, with the height of the bar corresponding to
the initial level of each Node. Without the low-level
initial expression of slp and SLP in positions 1 and 5,
marked by asterisks, solutions are about five times
scarcer, but the same restrictions on parameter
values appear (not shown), albeit more extreme.
Note that this initial pattern is also almost exactly
the final pattern we expect. (C) Drunken-spider plot
of 100 parameter sets that enable the Wg-Slp-En
sub-module to hold the same pattern as we require of
the standard segment polarity model; strong restric-
tions are evident on several parameters. kXy refers to
the half-maximal coefficient for action of regulator X
on target y; nXy is the cooperativity exponent for that
interaction; HX refers to the time constant for X
degradation; rMxferWG and rLMxferWG are the rates at
which WG equilibrates from one cell face to the
apposed face of the neighbor, or to the neighboring
faces on the same Cell, respectively. Compare this
plot to Figure 2a in von Dassow et al. (2000). There
are stronger cross-correlations among parameters in
this subcircuit than for the whole network (not
shown). (D) Histograms compiled from 617 para-
meter sets that make the subcircuit ‘‘work,’’ illus-
trating that there are many modest biases in
addition to the strong restrictions evident in the
wheel plot. For instance, note that the cooperativity
for WG activation of slp should be low, but for SLP
activation of wg should be high. Compare to Figure 6
in the companion paper. Ranges along the horizontal
axis are 1,000-fold (log scale) for values of k and r, 10-
fold for values of n, and 100-fold for values of H, as
for the segment polarity network. Thus the restric-
tion on kSLPwg, for example, is about 1 order of
magnitude wide.
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become critical adjuncts to lab-bench molecular
biology, just as they have become for various fields
from enzymology to ecology. Yet most biologists do
not presently receive or seek the mathematical
and computer science training they would need to
develop such tools on their own or even to use
general-purpose mathematical software. A pro-
gram like Ingeneue can build mathematically
rigorous models using a syntax that biologists
with brief training in differential equations can
learn easily. This biologist can then explore his or
her favorite networks through the graphical inter-
face and gain an intuitive understanding of its
dynamical behavior as a whole mechanism. This
kind of computer-assisted synthesis, if made
accessible to the scientists that actually confront
the biological subject every day, will help us all
understand gene network mechanics better.

We designed Ingeneue to facilitate its use as a
fairly general tool. Because the code is object-
oriented and separated into distinct pieces that do
not rely explicitly upon each other’s details,
Ingeneue can be easily extended to add features,
methods, and facilities. This is particularly evident
in the Affectors, where it takes a trivial amount of
code to add a new formula. The same thing is true
for pattern-matching algorithms, search strate-
gies, initial conditions, and the graphical interface.
In addition to ease of modification, the program’s
structure has made it easy for us to replace
mathematical formulas with names (of Affectors,
for instance), and in the future with graphical
symbols, that can be combined together to make
models. Ultimately this architecture will become a
grammar and syntax for translating a diagram of a
gene network to a set of mathematical equations
and back again. Using this syntax we can
construct new networks almost entirely from the
existing Affectors in relatively short times. Even
those of us who have some mathematical training
find this tremendously helpful! Perhaps even more
important, the stereotyping of building blocks
makes it easier to compare one model to another;
if two models have been built from the same
parts and analyzed the same way, the results
should be more readily comparable than if two
different artisans crafted them in their own
styles. Just as helpful is Ingeneue’s ability to
instantiate a network over a field of cells, correctly
hooking up exchanges of all the transmembrane
components and eliminating many of the small
mistakes that would inevitably creep in when
trying to keep track of so many equations by
hand.

We do not think of Ingeneue as the ultimate in
pattern formation simulators. Ingeneue is still
very much a work in progress, and serious
conceptual and technical weaknesses remain.
One deficiency is Ingeneue’s current inability to
deal with morphogenesis or cell movement. In
many cases, developmentally interesting patterns
are formed at the same time that cells are dividing,
moving around, and changing neighbors. These
movements may be intimately coupled to the
pattern formation process. Furthermore, Inge-
neue assumes cells to be well-stirred reaction
beakers (although we impose compartmentaliza-
tion, e.g., separating cell faces), an approximation
that no one even remotely believes. Indeed, almost
every well-understood developmental mechanism
includes some fascinating and functionally impor-
tant instance in which the structure of cells plays
a crucial role: apical–basal sorting of receptors and
ligands; the flexibility of stretches of chromatin;
clustering of receptors; etc. Models of all kinds
must balance tractability with realism. In Inge-
neue we have chosen a certain level of realism
which may limit its usefulness but which allows us
to use it to explore parameter space in a way that a
more realistic modeling framework would pre-
clude because of the computational burden.

Another weak spot in our approach is the
problem of recognizing patterns. Although we have
a mechanism in place to build complex pattern
recognizers from smaller pieces, pattern recognition
is a hard problem, and it is not clear whether our
mechanism will work in general without imposing
an onerous coding and training burden on the user.
Thus some uses of Ingeneue are still likely to
involve clever custom programming, although this
will hopefully decrease as the program matures. No
matter what, we doubt very much that any
computer recipe can, without extensive training,
replace the intuition of the human biologist when it
comes to pattern recognition.

We have been using Ingeneue to address a wide
variety of questions in developmental and evolu-
tionary biology (von Dassow et al., 2000; Meir
et al., 2002; Odell et al., unpublished observations;
von Dassow and Odell, 2002). These include
simply asking, how complete is our current
understanding of a gene network? Given the
known facts, is the proposed mechanism plausi-
ble? And, how do the different components of a
network contribute to its behavior? We have also
used Ingeneue to ask how important particular
classes of interactions are to the functioning of a
network, and to explore how the structure of a
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network affects its function. The examples above
illustrate some of these results. Most of all, we feel
that through model-building we can translate
what the community of developmental biologists
knows about developmental mechanics into the
theoretical framework of evolutionary biology. For
example, our model of the segment polarity net-
work unexpectedly yielded a putative example of
the mechanistic origins of canalization. We hope
that these beginnings and the free availability of
this program will inspire other biologists to try
similar explorations.

ACKNOWLEDGMENTS

Thanks to Dara Lehman for comments on early
drafts. Funding for the development of Ingeneue
and for other work mentioned here came from the
National Science Foundation (MCB-9732702,
MCB-9817081, MCB-0090835). Much of the work
described here was done at Friday Harbor La-
boratories, and we thank Dennis Willows and the
FHL staff for space and support. Appendix B was
previously published as part of GvD’s doctoral
thesis (University of Washington Department of
Zoology, 2000). We dedicate this paper to the
memory of Dr. DeLill Nasser, program director in
genetics at NSF. DeLill encouraged us even in the
early exploratory stages of this work, before there
was any buzz about bio-informatics, when even
we ourselves weren’t sure this project would
amount to much. We are deeply grateful for her
open-minded vision.

LITERATURE CITED

Arnosti DN, Barolo S, Levine M, Small S. 1996. The eve stripe
2 enhancer employs multiple modes of transcriptional
synergy. Development 122:205–214.

Aza-Blanc P, Ramirez-Weber FA, Laget MP, Schwartz C,
Kornberg TB. 1997. Proteolysis that is inhibited by hedge-
hog targets Cubitus interruptus protein to the nucleus and
converts it to a repressor. Cell 89:1043–1053.

Barkai N, Leibler S. 1997. Robustness in simple biochemical
networks. Nature 387:913–917.

Barkai N, Leibler S. 2000. Circadian clocks limited by noise.
Nature 403:267–268.

Bhat KM, van Beers EH, Bhat P. 2000. Sloppy paired acts as
the downstream target of wingless in the Drosophila CNS
and interaction between sloppy paired and gooseberry
inhibits sloppy paired during neurogenesis. Development
127:655–665.

Bray D, Levin MD, Morton-Firth CJ. 1998. Receptor cluster-
ing as a cellular mechanism to control sensitivity. Nature
393:85–88.

Burden RL, Faires JD, Reynolds AC. 1978. Numerical
analysis. Boston: Prindle, Weber and Schmidt.

Burke R, Nellen D, Bellotto M, Hafen E, Senti KA, Dickson
BJ, Basler K. 1999. Dispatched, a novel sterol-sensing
domain protein dedicated to the release of cholesterol-
modified hedgehog from signaling cells. Cell 99:803–815.

Cadigan KM, Grossniklaus U, Gehring WJ. 1994a. Functional
redundancy: the respective roles of the two sloppy paired
genes in Drosophila segmentation. Proc Natl Acad Sci U S A
91:6324–6328.

Cadigan KM, Grossniklaus U, Gehring WJ. 1994b. Localized
expression of sloppy paired protein maintains the polarity of
Drosophila parasegments. Genes Dev 8:899–913.

Cash JR, Karp AH. 1990. A variable order Runge–Kutta
method for initial value problems with rapidly varying
right-hand sides. ACM Trans Math Software 16:201–222.

Dierick HA, Bejsovec A. 1998. Functional analysis of Wingless
reveals a link between intercellular ligand transport and
dorsal-cell-specific signaling. Development 125:4729–4738.

Driever W. 1993. Maternal control of anterior development in
the Drosophila embryo. In: Bate M, Martinez-Arias A,
editors. The development of Drosophila melanogaster. Plain-
view, NY: Cold Spring Harbor Laboratory Press. p 301–324.

Driever W, Thoma G, Nusslein-Volhard C. 1989. Determina-
tion of spatial domains of zygotic gene expression in the
Drosophila embryo by the affinity of binding sites for the
bicoid morphogen. Nature 340:363–367.

Edgar BA, Weir MP, Schubiger G, Kornberg T. 1986.
Repression and turnover pattern fushi tarazu RNA in the
early Drosophila embryo. Cell 47:747–754.

Edgar BA, Odell GM, Schubiger G. 1989. A genetic switch,
based on negative regulation, sharpens stripes in Drosophila
embryos. Dev Genet 10:124–142.

Gibson G. 1996. Epistasis and pleiotropy as natural properties
of transcriptional regulation. Theor Popul Biol 49:58–89.

Gibson G, Wagner G. 2000. Canalization in evolutionary
genetics: a stabilizing theory? BioEssays 22:372–380.

Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott
MP. 1996. Conservation of the hedgehog/patched signaling
pathway from flies to mice: induction of a mouse patched
gene by Hedgehog. Genes Dev 10:301–312.

Grossniklaus U, Pearson RK, Gehring WJ. 1992. The
Drosophila sloppy paired locus encodes two proteins
involved in segmentation that show homology to mamma-
lian transcription factors. Genes Dev 6:1030–1051.

Gurdon JB, Harger P, Mitchell A, Lemaire P. 1994. Activin
signalling and response to a morphogen gradient. Nature
371:487–492.

Johnson LW, Reiss RD. 1982. Numerical analysis. Reading,
MA: Addison-Wesley.

Kauffman SA. 1993. The origins of order: self-organization
and selection in evolution. New York: Oxford University
Press. xviii, 709 pp.

La Rosee A, Hader T, Taubert H, Rivera-Pomar R, Jackle H.
1997. Mechanism and Bicoid-dependent control of hairy
stripe 7 expression in the posterior region of the Drosophila
embryo. EMBO J 16:4403–4411.

Laub MT, Loomis WF. 1998. A molecular network that
produces spontaneous oscillations in excitable cells of
Dictyostelium. Mol Biol Cell 9:3521–3532.

Lee HH, Frasch M. 2000. Wingless effects mesoderm pattern-
ing and ectoderm segmentation events via induction of its
downstream target sloppy paired. Development 127:
5497–5508.

Marigo V, Scott MP, Johnson RL, Goodrich LV, Tabin CJ.
1996. Conservation in hedgehog signaling: induction of a

E. MEIR ET AL.234



chicken patched homolog by Sonic hedgehog in the devel-
oping limb. Development 122:1225–1233.

McAdams HH, Shapiro L. 1995. Circuit simulation of genetic
networks. Science 269:650–656.

Meir E, von Dassow G, Munro E, Odell GM. 2002. Robustness,
flexibility, and the role of lateral inhibition in the neuro-
genic network. Curr Biol 12:778–786.

Moline MM, Southern C, Bejsovec A. 1999. Directionality of
wingless protein transport influences epidermal patterning
in the Drosophila embryo. Development 126:4375–4384.

Murray JD. 1993. Mathematical biology. Berlin: Springer-
Verlag. xiv, 767 pp.

Nellen D, Burke R, Struhl G, Basler K. 1996. Direct and long-
range action of a DPP morphogen gradient. Cell 85:357–368.

Pai LM, Orsulic S, Bejsovec A, Peifer M. 1997. Negative
regulation of Armadillo, a Wingless effector in Drosophila.
Development 124:2255–2266.

Pfeiffer S, Vincent JP. 1999. Signalling at a distance:
transport of Wingless in the embryonic epidermis of
Drosophila. Semin Cell Dev Biol 10:303–309.

Porter JA, Ekker SC, Park WJ, von Kessler DP, Young KE,
Chen CH, Ma Y, Woods AS, Cotter RJ, Koonin EV, Beachy
PA. 1996. Hedgehog patterning activity: role of a lipophilic
modification mediated by the carboxy-terminal autoproces-
sing domain. Cell 86:21–34.

Press WH. 1992. Numerical recipes in C: the art of scientific
computing. New York: Cambridge University Press. xxvi,
994 pp.

Ptashne M. 1992. A genetic switch: phage l and higher
organisms. Cambridge, MA: Cell Press, Blackwell Scientific
Publications. ix, 192 pp.

Reinitz J, Sharp DH. 1995. Mechanism of eve stripe forma-
tion. Mech Dev 49:133–158.

Slack JMW. 1983. From egg to embryo: determinative events
in early development. New York: Cambridge University
Press. 241 pp.

Struhl G, Struhl K, Macdonald PM. 1989. The gradient
morphogen bicoid is a concentration-dependent transcrip-
tional activator. Cell 57:1259–1273.

Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J. 1998.
From specific gene regulation to genomic networks: a global
analysis of transcriptional regulation in Escherichia coli.
BioEssays 20:433–440.

Tyson JJ, Novak B, Odell GM, Chen K, Thron CD. 1996.
Chemical kinetic theory: understanding cell-cycle regula-
tion. Trends Biochem Sci 21:89–96.

von Dassow G, Meir E, Munro EM, Odell GM. 2000. The
segment polarity network is a robust developmental module.
Nature 406:188–192.

von Dassow G, Odell GM. 2002. Design and constraints of the
Drosophila segment polarity module: robust spatial pattern-
ing emerges from intertwined cell state switches. J Exp Zool
(Mol Dev Evol) 294:179–213.

Weir MP, Edgar BA, Kornberg T, Schubiger G. 1988. Spatial
regulation of engrailed expression in the Drosophila
embryo. Genes Dev 2:1194–1203.

APPENDIX A: MATHEMATIZING GENE
REGULATORY INTERACTIONS

We outline a general approach for converting
empirical descriptions of network interactions into
the mathematical formulae that Affector objects
encapsulate. We focus on transcription as an
example because it is a form of network interac-
tion that involves a wide range of regulatory
phenomena, but the methods we describe can be
readily applied to the other types of Affectors.

General form of transcriptional
Affector equations

A transcriptional Affector determines the tran-
scription rate for a Node as a function of all
regulatory influences impinging on that Node
(each Node has at most one primary synthesis
Affector). In dimensional terms, the rate equation
for a transcriptional Affector has the general form

d½x�
dt

¼ Tmax�xFð½R1�; ½R2�; . . . ; ½RN�Þ: ðA1Þ

Tmax is the maximal possible transcription rate for
any gene, determined by the enzymology of RNA
polymerase, and �x is an efficiency characteristic of
gene x, reflecting how good a template x is.
F : <N ! ½0; 1�, a function of the regulator con-
centrations ð½R1�; ½R2�; . . . ; ½RN�Þ, determines at

what fraction of full efficiency x is transcribed.
By definition, values of F must lie between 0 and 1
inclusive. Building an Affector formula for a given
regulation mechanism amounts to determining an
appropriate functional form for F, and parame-
trizing it.

A simple example: transcriptional
activation

We start with a very simple example which
forms the basis for all the more complicated
regulatory schemes described below. Consider a
single regulatory factor A, which activates tran-
scription of gene x. For mathematical clarity, we
focus attention on one copy of x (unless transcrip-
tional regulators are present in very low numbers,
the overall transcription rate is simply twice the
rate from one copy). Without any significant loss of
generality, we can think of the underlying me-
chanism as involving two steps (Fig. A1): in the
first step, A interacts with a specific DNA
sequence in a concentration-dependent way to
form an ‘‘active complex’’ An. For example, A
might bind directly to DNA, or bind as part of a
larger complex involving other molecules, or
catalyze the formation of a complex which binds to
DNA without itself doing so. In the second step,
the active complex An interacts with a proximal
promoter region to boost the rate at which new
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transcripts are initiated. Again, there are many
possible ways this could occur: An could modify the
local structure of chromatin to allow greater access
to other transcription factors, or associate more
directly with proximal transcriptional machinery or
the proximal promoter to recruit one to the other,
etc.

With this general mechanism in mind, we can
write FðAÞ as

FðAÞ ¼ �A�ðAÞ; ðA2Þ
where �ðAÞ is the fraction of time that the active
complex An exists as a function of A’s concentra-
tion, and �A is the efficiency with which An boosts
transcription of x. Alternatively, we can think of
F Að Þ as representing the probability that x is
transcriptionally active at a given point in time,
where transcriptionally active means that x is
transcribed at its maximum rate Tmax�x. In this
case, �ðAÞ represents the probability that an
active complex exists at a given point in time,
and �A represents the conditional probability that
x is transcriptionally active, given that an active
complex exists, or simply the probability that An

activates x. This probabalistic interpretation turns
out to be very useful in building representations of
more complex forms of regulation, as we will
return to below.

In the case of simple activation, and in the
absence of any detailed knowledge about how A
interacts with gene x, we use the simple generic
form for �ðAÞ:

�ðAÞ ¼
½A�
KA

� ��A
1 þ ½A�

KA

� ��A ¼ ½A��A
K�A

A þ ½A��A
� �

; ðA3Þ

where KA is the value at which �ðAÞ ¼ 0:5 and �A
is the degree of cooperativity. As discussed in the
text, we can think of �ðAÞ as a measurable dose–
response curve, expressing in the most general
terms what must be the case for an interaction
between A and x: that the magnitude of the
interaction must increase and then saturate with
increasing concentrations of A, that it does so
more or less steeply, and that A has a maximal
effectiveness as an activator of x.

To represent more complicated forms of tran-
scriptional regulation involving multiple regula-
tors, we replace �ðAÞ and A with more complicated
expressions, which we must deduce from what we
know about those additional regulators and their
interactions. We have taken two general ap-
proaches to doing so. The first generalizes from
simple kinetics to produce replacements for �ðAÞ.
The second represents interactions as logical
conditions and uses simple probability theory.

Deducing regulatory forms from
steady-state kinetics

Many transcriptional regulators are known to
interact either before or during complex forma-
tion. For example, different activators bind to
DNA as heterodimers, or otherwise assemble
active complexes around the same or nearby
DNA sequences. Many inhibitors act by competing
with an activator for its binding site or by binding
to and titrating away an activator before it binds.
In these cases, we can deduce suitable regulatory
forms by 1) writing down the simplest kinetic
scheme that summarizes (or caricatures) what we
know about the binding interactions among
regulators and DNA sequences; 2) solving the
resulting kinetic rate equations to find the steady
state concentration of whatever complex we are
interested in; 3) where necessary or convenient,
approximating the resulting steady state expres-
sion with an appropriate simpler form; and 4)
generalizing the resulting form in an appropriate
way to allow for cooperative effects. We will
illustrate this approach with several examples.

Example 1: A single activator binds a
target DNA sequence

Consider first the simple kinetic scheme in
which activator A binds to a specific sequence S
within the regulatory region of gene x to form the
bound complex AS (Fig. A2A):

Aþ S,
kþ

k�
AS: ðA4Þ

Fig. A1. Schematic view of transcriptional regulation as a
two-step process. In step 1, regulator A forms an active
complex An around sequence S in a concentration-dependent
manner. The fraction of bound complex is given by C(A). In
step 2, the active complex An regulates the rate at which
transcription is initiated at the proximal promoter with
efficiency 0raAr1 (see text for details).
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Fig. A2. Deducing pseudo-kinetic representations of reg-
ulatory interactions from kinetic interaction diagrams. Left
column shows interaction diagrams. Right column shows the
algebraic forms we deduce from those diagrams by assuming
all binding reactions are at steady state, making use of simple
approximations where necessary, and generalizing to include
cooperative effects. S indicates a specific DNA sequence. A and
B represent transcriptional activators, and I represents a
transcriptional inhibitor. Arrows indicate reversible reactions
(only the forward half of each reaction is shown for clarity).
Plus sign (or minus sign) within a circle indicates a positive (or
negative) regulation of the indicated reaction. (A) An activator
binds a target DNA sequence (present at two copies per cell) to
form an active complex. The fraction of bound complex is given
by the generalized function C(A) shown to the right. (B) Two
molecules (each present at arbitrary concentrations) bind to
form a dimer complex. To the right are the exact concentration
of dimer, and the approximate form O(A,B) generalized to

arbitrary cooperativity. (C) An inhibitor I binds to and titrates
away an activator A before it binds to a target DNA sequence S
to form an active complex. The fraction of active complex is
given by the same function C shown in (A), but in this case,
the amount of A available to bind its target is the total amount
of A minus the amount of bound activator–inhibitor complex
O(A,I) as shown to the right. (D) An inhibitor acts to
competitively exclude A from binding to its target sequence
S. Here we show I binding to S itself, but it could also bind to
an adjacent sequence. To the right is the generalized steady-
state form, obtained by assuming that A and I bind with
entirely independent affinities and cooperativities. (E) Reg-
ulator B boosts A’s efficacy as a transcriptional activator by
converting it from a low-affinity form (A) to a high-affinity
form (AP). In this case, several successive approximations are
required to obtain the simple form shown to the right. (F)
Similar to E, but in this case I converts A from a high-affinity
to low-affinity form.
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The resulting equations are:

d½AS�
dt

¼ kþ½A�½S� � k�½AS�; ½AS� þ ½S� ¼ 1; ðA5Þ

where the second equation expresses the stoichio-
metric fact that there is a single sequence which
must be in either a bound or unbound state. We
then set d½AS�=dt ¼ 0 and solve for the steady-

state fraction of bound complex AS to obtain

½AS� ¼
½A�
K

1 þ ½A�
K

¼ ½A�
K þ ½A� ; ðA6Þ

where K ¼ k�=kþ becomes the half-maximal acti-
vation coefficient. To obtain the generic form
� ½A�ð Þ, we simply apply a cooperativity exponent
�A to each appearance of [A] and K in Eq. (A6).

Example 2: Protein dimerization and its
generalization

Now consider a similar reaction in which A and
B are two proteins that bind to form the hetero-
dimer AB (Fig. A2B):

Aþ B,
kþ

k�
AB: ðA7Þ

Unlike Example 1 where [A] changes negligibly as
a consequence of the reaction, in general, both [A]
and [B] might change as a consequence of
dimerization, and indeed we may often be inter-
ested in the fraction remaining unbound. Thus we
need to be more explicit in the associated kinetic
equations:

d½Afree�
dt

¼ k� � ½AB� � kþ � ½Afree�½Bfree�;

d½Bfree�
dt

¼ k� � ½AB� � kþ � ½Afree�½Bfree�;

d½AB�
dt

¼ kþ � ½Afree�½Bfree� � k� � ½AB�;

½A� ¼ ½Afree� þ ½AB�;
½B� ¼ ½Bfree� þ ½AB�:

ðA8Þ

Here [A] and [B] represent the total concentra-
tions of reactants, [Afree] and [Bfree] represent the
concentrations of free (unbound) reactants, and
[AB] is the total concentration of bound complex.
Solving Eq. (A8) at steady state (or just using the
mass action law’s formula for the equilibrium
condition, Keq ¼ ½AB�=½Afree�½Bfree�), substituting for
[Afree] and [Bfree] from the mass balance equa-
tions, and using K ¼ k�=kþ ¼ 1=Keq we obtain the
quadratic equation

½A� � ½AB�ð Þ ½B� � ½AB�ð Þ
K

� ½AB� ¼ 0 ðA9Þ

with a single positive root given by

½AB� ¼

K þ ½A� þ ½B�ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ ½A� þ ½B�ð Þ2�4 � ½A�½B�

q
2

:

ðA10Þ

Fig. A3. Deducing regulatory forms using simple probabil-
ities. (A) Two activators, A1 and A2, bind to separate enhancer
elements, S1 and S2, and independently activate transcription
from the proximal promotor with probabilities (efficiencies) a1

and a2. (B) A single inhibitor I binds to its enhancer element
SI and globally inhibits transcription as activated by either A1

or A2 with probability (efficiency) aI. (C) Inhibitor I binds to
enhancer element SI and inhibits A1’s activation of transcrip-
tion with probability (efficiency) aI but has no effect on
transcription as activated by A2.
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Equation (A10) is a perfectly good way to estimate
the steady state of a dimerization reaction exactly,
but it is non-intuitive and difficult to generalize
(i.e., to add cooperativity). To this end, we
introduce a simpler function:

½AB� ¼ �ð½A�; ½B�;KABÞ ¼
½A�½B�
KAB

1 þ ½A�
KAB

þ ½B�
KAB

¼ ½A�½B�
KAB þ ½A� þ ½B� : ðA11aÞ

If we want the fraction of [A] (or [B]) unbound we
use the relation ½Afree� ¼ ½A� � ½AB�:
½Afree� ¼� ½A�; ½B�; KABð Þ ¼ ½A� � ½A�½B�

KAB þ ½A� þ ½B�

¼½A� 1 � ½B�
KAB þ ½A� þ ½B�

� �
: ðA11bÞ

Equation (A11) has the same qualitative proper-
ties as Eq. (A10): it is symmetric to exchange
of A and B; for fixed [A], it saturates to the value of
[A] with increasing [B] (and vice versa); it
increases without bound as both [A] and [B]
increase. It is a good approximation to Eq. (A10)
in the sense that, for any value of K in Eq. (A10),
we can find a value of KAB in Eq. (A11) such
that the difference between Eqs. (A10) and (A11)
is small for all values of [A] and [B] (we formalize
this notion below). Finally, we can generalize
Eq. (A11) to add a ‘‘cooperativity’’ effect6

as follows:
½AB� ¼ � ½A�; ½B�;KAB; �ABð Þ

¼ ½A� ½B��AB
K�AB

AB þ ½A��AB þ ½B��AB
� �

;

½Afree� ¼ � ½A�; ½B�;KAB; �ABð Þ

¼ ½A� 1 � ½B��AB
K�AB

AB þ ½A��AB þ ½B��AB
� �

:

ðA12Þ

Example 3: A form of competitive
inhibition

Here is how we would use the same approach
as in Example 1 to model competitive inhibition in

which activator A and inhibitor I bind to the
same sequence S (Fig. A2D). In this case, the
kinetic scheme is

Aþ S,
kþ
A

k�
A

AS;

I þ S,
kþ
I

k�
I

IS:

ðA13Þ

The resulting equations are

d½AS�
dt

¼ kþA ½A�½S� � k�A ½AS�;

d½IS�
dt

¼ kþI ½I�½S� � k�I ½IS�;

½AS� þ ½IS� þ ½S� ¼ 1;

ðA14Þ

and solving them at steady state yields

½AS� ¼ F Að Þ 1 � F Ið Þð Þ
1 � F Að ÞF Ið Þ ; ðA15Þ

where

F Að Þ ¼
½A�
KA

1 þ ½A�
KA

; KA ¼ k�A
kþA

; ðA16Þ

as for Example 1 above. We can generalize this
form exactly as described for Example 1 above by
replacing the functions F(A) and F(I) with the
generic forms � Að Þ and � Ið Þ to obtain:

½AS� ¼� Að Þ 1 � � Ið Þð Þ
1 � � Að Þ� Ið Þ

¼
½A��A 1 � ½I��I

K
�I
I
þ½I��I

� �

K�A
A þ ½A��A 1 � ½I��I

K
�I
I
þ½I��I

� �
0
BB@

1
CCA

¼
A
KA

� ��A
1 þ A

KA

� ��A
þ I

KI

� ��I
0
B@

1
CA: ðA17Þ

However, Eq. (A15) could be generalized differ-
ently, such that I affects the concentration of A
before application of the exponent in �. This
corresponds to a choice that is simple to explain
mathematically but rather complicated to unwind
mechanistically: does the inhibitor affect the
effective concentration of A directly, or does it
affect A activity ‘‘after’’ A has assembled into
whatever bound complex confers the cooperativity
exponent? Figure A5B and C contrast these two
choices. A fourth choice, not plotted in Fig. A5
but diagrammed as Fig. A2C, would multiply [A]

6This introduces an asymmetry between A and B. However, this is
realistic. Cooperative binding phenomena usually involve a single
macromolecule (say, a single molecule of A, even if A is in fact a protein
complex) that binds several ligands. Examples include hemoglobin
binding to oxygen, and IPTG binding to the lac repressor; both
macromolecules are tetramers. A typical treatment of such a case
assumes the ligand is present in vast excess, and thus results in
Eq. (A3). However, if the ligand could be present at similar
concentration to its partner, or if what we know is the total ligand
concentration rather than the concentration of unbound ligand, then
Eq. (A3) is inadequate and potentially misleading. The rigorous
treatment of such a case is complicated, and we emphasize that Eqs.
(A11) and (A12) are only offered as convenient approximations whose
qualitative behavior matches our expectations of the behavior of such a
system.
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by � ½A�; ½I�; KIA; �IAð Þ prior to the computation of
� ½Afree�; KA; �Að Þ; this approximates a mechanism
in which the inhibitor titrates away free A before
A binds its target sequence.

Figure A2 shows some of the other forms one
can readily deduce to describe different types of
regulatory interaction. The forms fall into two
general classes. Forms in the first class (Fig. A2A
and A2C–F) are dimensionless and have values
that lie strictly within the interval [0,1]. Each of
these forms represents the fraction of time that
some active complex exists and therefore ‘‘fits’’
into the general form of F(A) given as Eq. (A2)
above. Forms in the second class (Fig. A2B) have
dimensions of concentration and therefore fit as
arguments to the general form F(A). All reduce
to the appropriate simpler forms when one or
more of the regulators are absent.

We want to stress that these forms are not
intended to be literal kinetic representations of
some detailed regulatory mechanism, which will
usually involve, in reality, a great deal more
algebraic gore. If we knew all of the details of
such a mechanism, then we could deduce such a
literal representation and incorporate it into the
framework described here. But even if we could,
there would be little advantage in using a detailed
representation of one interaction within a network
if we are only using cruder approximations some-
where else. However, it is instructive to think of
the equations we deduce as approximations to the
literal kinetic forms and then ask whether they
are ‘‘good’’ approximations.

To do so, we must define what we mean by
‘‘good’’. Suppose FapproxðR1;R2;p1; p2; p3Þ is an
approximate form deduced as above for two
regulators R1 and R2 of gene x, and parameterized
by p1, p2, and p3. Suppose further that we actually
knew all of the underlying molecular players
involved in mediating interactions of R1 and R2

with x. Then we could write down a complex set of
kinetic equations expressing these interactions
and solve them at steady state to deduce an
‘‘exact’’ (not really) function FexactðR1;R2;
C1; :::;CN; k1; :::kMÞ where the C’s and k’s are the
concentrations7 of those underlying players and
kinetic parameters governing their interactions.
The set of all possible values for the parameters
ðC1; . . . ;CN; k1; . . . ; kMÞ determines a range of
shapes of Fexact as a function of R1 and R2. We

say that FapproxðR1;R2Þ is a good approximation of
FexactðR1;R2Þ if it manifests a quantitatively
similar set of shapes when we vary the parameters
ðp1; p2; p3Þ. Another way to say this is that
FapproxðR1;R2Þ is a good approximation of
FexactðR1;R2Þ if for any choice of parameters for
Fexact ðC0

1; . . . ;C
0
N; k

0
1; . . . ; k

0
NÞ, there exists a choice

of values ðp01; p02; p03Þ, such that FexactðR1;R2;
C0

1; . . . ;C
0
N;k

0
1; . . . ;k

0
NÞ and Fapproxðp01; p02; p03Þ have

similar shapes.
Of course, we cannot compare our approximate

representations to the literal ones because we do
not know what the literal ones are. But we can
compare two different approximate schemes that
represent the same regulatory scheme at different
levels of resolution (where one might include
additional intermediates or auxiliary proteins
present at constant concentrations). Where we
have done so, we find that the simpler schemes are
surprisingly good at approximating the more
complicated ones, good enough that we can find
no reason to use the more complicated ones in our
network models.

We can use this same notion to compare
different ways of representing the same set of
empirically observed regulatory interactions. For
example, we deduced many of the regulatory
forms we used in our early models by intuition,
seeking formulae whose properties expressed
adequately what we took to be the basic empirical
facts. In many cases, we find that different forms
are equivalently good representations of a parti-
cular regulatory interaction in the sense that each
approximates the others as defined above (see
Figs. A4 and A5). In this case, we are free to apply
other criteria to choose the ‘‘best’’ one, e.g., which
is most easily parametrized, or makes the most
biological sense, or combines most easily with
other forms.

We emphasize that the important distinction
between these different formula options is the
distinction between their graphs (Figs. A4 and A5)
and the qualitative properties thereof. For exam-
ple, compare the shapes in Fig. A5A,D,G,J with
the shapes in Fig. A5C,F,I,L; in Fig. A5D, a
particular concentration of the inhibitor (moving
to the left) squelches activation by a certain
fraction no matter what the level of activator; in
Fig. A5F, this is not so. The difference is that in
the formula governing the left column the in-
hibitor regulates the maximal activity level,
whereas in the right column the inhibitor reg-
ulates how much activator is required to achieve
that level, and in the middle column inhibitor

7We assume that the concentrations of the underlying players are
constant on the timescale of interest. Otherwise, we would have to
include them in our pseudo-kinetic representation.
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regulates availability of the acivator (that is,
inhibitor modulates Tmax versus k versus [A]).
Other scenarios (especially mixes of these) are
biologically plausible. Often the model-maker
simply will not have the information to choose,
and the fact is that in certain circumstances, some
shapes work, and others don’t (see example of wg
autoregulation in the companion paper by von
Dassow and Odell, ’02, this issue).

Using logical descriptions and
probabilities to deduce regulatory

forms

As mentioned above, we can think of binding
fractions and interaction efficiencies in probabil-
istic terms. Doing so provides a powerful way to
deduce representations for more complicated
types of regulation. To see how, we must introduce
more notation. First, we must define the condi-
tions whose probabilities we would like to repre-
sent. Let X be a gene and R be one of its regulators,

and let

�xx be the condition : ‘‘x is transcriptionally active00:

R� be the condition : ‘‘An active complex;

representing the interaction

between R and x; exists00:

R� ! x be the condition : ‘‘The active complex

regulates x00:

More generally, we use A ! B to mean ‘‘A has its
characteristic effect on B,’’ and we use this
notation wherever A and B are such that the
condition A ! B makes sense. Finally, we let P(C)
be the probability that condition C holds at a given
point in time. For convenience we will use &&, 3,
and ! interchangeably with logical AND, OR, and
negation, respectively. Returning to the simple
case of a single activator A and gene x, the
probability that x is transcriptionally active is
the probability that A activates x, which is the

Fig. A4. Formulas for transcriptional control by two
activators. The differential equation at the top of the figure
is typical for mRNAs: the concentration of x increases at a rate
proportional to some non-linear function F of various
regulators, in this case two activators (A and B), and decreases
in proportion to the concentration of x. (A–D) Various forms of
f([A],[B]) with accompanying graphs. All graphs use the
parameter values shown at the top, and plot normalized
values of [A] and [B] from 0.0 to 2.0. The simple formula in (A)
has the advantage of reducing to a single Hill function in the
absence of either activator. It corresponds to the assumption
that A and B bind the same site with different affinities and
cooperativities, that each forms an active complex at that site
which activates transcription with maximal efficiency a¼1. In
other words, it’s what one obtains from computing the bound
fraction of A in the presence of competitor B (Eq. (A17),
rightmost coequal form) and adding it to the bound fraction of
B in the presence of competitor A. However, using this
formula both activators reach the same saturating level, and
the formula expresses neither additive nor synergistic effects,
thus we have not much used it in practice. (B) is an alternative
which, through the weights a and b, allows one to adjust the
relative ability of each activator to saturate the target
promoter, and causes the activators to have an additive, but
saturating, effect on transcription rate. However, among other
oddities, this formula does not reduce to the simple single-
activator case in the absence of the other, and furthermore,
the weight parameters change the meaning of the half-
maximal coefficients kAx and kBx. Nevertheless this formula
may be a reasonable approximation to certain two-step
enhancer-binding phenomena, and we have used it in various
forms of the segment polarity network model (however, see
the companion paper by von Dassow and Odell, ’02, this issue).
(C) is an improvement over (B) that, as described in the

Appendix text, multiplies the probabilities that either activa-
tor will not be bound and then takes the complement of this
quantity to determine the overall transcriptional activity. This
is the same as Eq. (A22) but with a slight change in how the
weights are treated (w is the ratio aA1/aA2; since in this formula
one term must be able to effect a maximal response, it makes
sense to normalize all weights to the largest of them). Formula
C/Eq. (A22) does reduce to the simple case, does preserve the
meaning of the half-maximal coefficients, allows for weighting
and easy incorporation of inhibitors, and furthermore, readily
lends itself to modularization in software such that one can
string together an arbitrary number of regulators into a single
additive term. We prefer this form for additive activation. D
represents another possibility for two activators that has
many of the virtues of C but with different operation of the
weights. E and F represent synergistic, rather than additive,
activators. In E, one activator, B, has no effect in the absence
of the other, A, and on the other hand, A by itself is only a poor
activator, but both together fully saturate the promoter. In F
the second activator, B, functions to lower the half-maximal
concentration of A, or in other words it makes A more potent
but has no effect itself, but nevertheless A can still achieve full
promoter saturation in the absence of the cofactor. E suggests
an equivalent scheme in which B catalyzes the transformation
of A (by phosphorylation or cleavage or what have you) from a
low-affinity form to a high-affinity form. The same exact
scheme could make B an inhibitor (if it promoted formation of
the low-affinity form), as shown in F). These six formulas
doubtless do not cover all possibilities, but it is apparent that
the choice of B, C, or D leaves one with qualitatively similar
dose-response behaviors, even though they may represent
different kinetic mechanisms and may affect the parameter-
ization of the model differently. The same cannot be said of E
and F, however.

3
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Fig. A5. Formulas for transcriptional control by an
activator and inhibitor. All three formulas shown at the top
are derived in the Appendix text; the individual graphs, which
plot normalized values of [A] and [I] from 0.0 to 2.0, represent
each of the formulas with different choices of nAx and nIx, as
shown to the left of each row. In all graphs kAx¼0.5, kIx¼0.8.
For (A–I) nAx¼3, representing modest cooperativity for the
activator; A–C impose a non-cooperative inhibitor; D–F, a
moderately cooperative inhibitor; G–I, a highly cooperative
inhibitor; and J–L combine a non-cooperative activator with a
moderately cooperative inhibitor. A, D, G, and J show
variations of the formula derived in Eq. (A27), but without
the a’s. These parameters are left out; aA is redundant if there

is only a single activator, and aI merely prevents the inhibitor
from fully squelching the activation term so we do not usually
use it. B, E, H, and K exhibit an alternate generalization of
Eq. (A16), whereas C, F, I, and L exhibit the formula in Eq.
(A17). The main conclusion we draw from this comparison is
that although the shape of the curve is broadly similar for each
formula, different choices dramatically affect how the para-
meter ranges limit gene action. For example, the formula in
the middle column enables the strongest inhibition at high
cooperativity, but at low cooperativity it resembles the
formula in the right-most column (compare B and C and
compare K and L). Meanwhile, the formula in the right-most
column is overall the ‘‘weakest’’ inhibition mechanism.

INGENEUE: RECONSTITUTING GENETIC NETWORKS IN SILICE 243



probability that A makes an active complex AND
that active complex activates x. We can write

Pð�xxÞ ¼ PðA ! xÞ ¼ PððA�Þ&& ðA� ! xÞÞ
¼ PðA�Þ � PðA� ! xÞ: ðA18Þ

The last equality above comes from the fact that
A� and A� ! x are independent conditions, and
thus their joint probability is the product of their
individual probabilities. This is simply Eq. (A3) in
disguise, with Pð�xxÞ ¼ PðA ! xÞ ¼ FðAÞ,
PðA�Þ ¼ �ðAÞ, and PðA� ! xÞ ¼ �A. To see how
we can extend this notation to describe new
situations, we must look at some examples.

Example 4: Independent activators

Suppose that we want to represent activation of
X by two independent activators A1 and A2, each of
which alone acts like A above (see Fig. A3A). In
this case, the probability that x is transcriptionally
active is the probability that A1 activates x OR A2

activates x:

FðA1;A2Þ ¼ Pð�xxÞ ¼ PðA1 ! xjjA2 ! xÞ: ðA19Þ
Using simple probability relations, we can quickly
transform the expression on the right-hand side
into something useful;

PðA1 ! xjjA2 ! xÞ ¼
Pð!ð!ðA1 ! xÞ&&!ðA2 ! xÞÞÞ ¼

1 � Pð!ðA1 ! xÞ&&!ðA2 ! xÞÞ
;

ðA20Þ
where we have used the relations

PðAjjBÞ ¼ Pð!ð!AÞ&&ð!BÞÞ and Pð!AÞ ¼ 1 � PðAÞ:
Since we assume A1 and A2 act independently, we
can reduce the joint probability on the right hand
side to the product of individual probabilites:

1 � Pð!ðA1 ! xÞ&&!ðA2 ! xÞÞ ¼
1 � Pð!ðA1 ! xÞÞ � Pð!ðA2 ! xÞÞ ¼

1 � ð1 � PðA1 ! xÞÞ � ð1 � PðA2 ! xÞÞ: ðA21Þ
Finally, putting Eqs. (A19), (A20), and (A21)
together, and replacing the final probabilities in
Eq. (A21) from Eq. (A3), we obtain

FðA1;A2Þ ¼ 1 � ð1 � �A1
�ðA1ÞÞ � ð1 � �A2

�ðA2ÞÞ:
ðA22Þ

Note that this reduces to Eq. (A3) if either A1 or
A2 is absent. Note also that we can immediately
generalize this expression to any number of
independent activators:

FðA1; . . . ;ANÞ ¼ 1 �
Y

i¼1�4N

1 � �Ai
�ðAiÞ

� �
: ðA23Þ

This is the virtue of this way of formulating
transcriptional control Affectors: the program
code can interpret an arbitrary list of regulators,
trivially building collections like Eq. (A23) as
arrays of a few simple building blocks. This is
the basis for "meta-affectors" in the current
version of Ingeneue.

Example 5: Inhibiting activation

Suppose now that factor A activates x and factor
I inhibits this activation. We have already dealt
with the case in which I interferes with formation
of the active complex An. Here we assume that I
acts downstream of complex formation. We can
express the action of I the logical condition I !
ðA� ! xÞ meaning ‘‘I prevents An from activating
x’’. In this case, the probability that A activates x
is the joint probability that A makes an active
complex AND that active complex is not inhibited
by I AND the uninhibited complex succeeds in
activating x:

FðA; IÞ ¼Pð�xxÞ ¼ PðA ! xÞ
¼PðA�&& ð!I ! ðA� ! xÞÞ&& ðA� ! xÞÞ:

ðA24Þ
If the individual conditions are independent, the
joint probability is the product of their individual
probabilities, or

FðA; IÞ ¼PðA�Þ � Pð!I ! ðA� ! xÞÞ � PðA� ! xÞ
¼ �A�ðAÞ � ð1 � PðI ! ðA� ! xÞÞÞ:

ðA25Þ
For generality, we assume that I binds to DNA to
form an active complex In, which inhibits An’s
activation of x with some probability (or effi-
ciency). We can then resolve the inhibition prob-
ability exactly as we did above for the activator A:

PðI ! ðA� ! xÞÞ ¼ PðI�Þ � PðI� ! ðA� ! xÞÞ ¼ �I�ðIÞ;
ðA26Þ

and we can put Eqs. (A25) and (A26) together to
obtain

FðA; IÞ ¼ �A�ðAÞ � ð1 � �I�ðIÞÞ: ðA27Þ
We can easily extend the same approach to
represent a ‘‘global’’ inhibitor that interacts with
the basal transcription machinery to shut down
activation, regardless of activator concentration,
by whatever mechanism. To do so, we simply
replace the condition I ! ðA� ! xÞ with the more
global condition I ! ð�xxÞ. In this case, the prob-
ability that x is transcriptionally active is simply
the probability that I does not inhibit the basal
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machinery AND the uninhibited x is active:

Pð�xxÞ ¼ Pð!I ! �xxÞ&&ð�xxUÞÞ
¼ ð1 � �I�ðIÞÞ � Pð�xxUÞ: ðA28Þ

For example, if x is activated by N independent
activators, and globally inhibited by I (see Fig.
A3B), then Pð�xxUÞ is given by Eq. (A23) above and
we have

FðI;A1; . . . ;ANÞ

¼ ð1 � �I � �ðIÞÞ 1 �
Y

i¼1�4N

1 � �Ai
� �ðAiÞ

� � !
:

ðA29Þ
By this point, it should be apparent to the

reader without going through all the tedious
probabilities how we could begin to generalize
this process. To make an inhibitor target a
particular part of a transcription regulatory
mechanism, we simply multiply the probability
term representing that part by the generic
inhibitory term �ðIÞ ¼ ð1 � �I�ðIÞÞ. For example,
if factors A1 and A2 activate x independently as in
Example 4 and we want factor I selectively to
inhibit A1 (see Fig. A3C), we multiply the
efficiency �A1

in Eq. (A22) by �ðIÞ to obtain

FðI;A1;A2Þ ¼ 1 � ð1 � �A1
��ðIÞ � �ðA1ÞÞ

� ð1 � �A2
�ðA2ÞÞ: ðA30Þ

There is of course no reason why we could not
choose a slightly different mechanism for I, in which
�ðIÞ nestles within �ðA1Þ somehow, as in Eq. (A17).

This trick is not limited to inhibitory influences.
For example, we might know that factor B is
‘‘required’’ for A to do its job and that it, too, must
bind to x to fulfill this requirement. If B is
constantly present, it becomes one of the many
shadowy co-conspirators that lurk beneath A ! A�

or A� ! x. However, if B is a dynamic part of our
network, we want to include that requirement.
To do so, we could simply multiply the efficiency
term for A, wherever it appears, by an activation
term for B:

�A ! �A�ðBÞ: ðA31Þ
The reader will no doubt think of other examples.

SUMMARY

The approach above has emerged from an
ongoing effort to encapsulate, in mathematical
equations, what physical intuition and empirical
facts tell us about various forms of regulation.
Given our current state of knowledge, these

formulations are necessarily approximate. There
are many ways to invent equations that furnish a
reasonable representation of any particular form
of regulation. Many of these are equivalent in the
sense described above, namely, that one can be
used to approximate the other with appropriate
choices of parameter (see Figs. A4 and A5). We do
not claim that the approach described here will
produce the ‘‘right’’ equations in every case. But it
has a number of virtues that lend themselves to
the type of modeling we do. Chief among these
is that it provides a general way to ‘‘map’’
biologists’ non-mathematical descriptions of net-
work interactions to specific mathematical equa-
tions whose parameters make intuitive biological
sense and are at least in principle empirically
measurable. The conceptual framework in which
it does so is general enough to encompass many
different proposed mechanisms of transcriptional
regulation. It is both modular and hierarchical,
allowing one easily to represent ever more
complicated types of regulation as combinations
of simpler forms. This means that it is also self-
consistent in the sense that complicated forms
involving multiple regulators reduce to appropri-
ate simpler forms when one or more of the
regulators is absent. Together, these properties
mean that a biologist using Ingenue could (in the
future) construct the types of diagrams shown in
Figs. A1–A3 to represent a specific type of
regulation mechanism, and Ingenue could then
convert these diagrams into the appropriate
Affector formulae.

APPENDIX B: EXPLOITING THE
STRUCTURE OF ODES CHARACTERIZING
GENE NETWORK DYNAMICS TO DESIGN

A FAST NUMERICAL SOLVER

Ingeneue implements a stereotyped formulation
for mathematizing maps of epigenetic networks,
as described here and in the Supplement to von
Dassow et al. (’00). Applying this formulation to
any real case typically yields a large system of
many non-linear ordinary differential equations
(ODEs), which we need to solve numerically for
hundreds of thousands, if not hundreds of mil-
lions, of different parameter sets. Each parameter
set requires the numerical solver to cross a large
time interval, which, depending both on the
numerical algorithm used and on the stiffness of
the equations with that parameter set, may be
broken into hundreds, thousands, or even hun-
dreds of thousands of individual time steps. Even
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if we knew measured values of all the free
parameters in some model, we would still wish to
explore the sensitivity to parameters, initial condi-
tions, and structure. Thus the time needed to solve
the system of equations that constitutes the model
is the primary determinant of how thoroughly we
can explore a particular model. If we could shorten
this procedure without sacrificing accuracy, we
would significantly improve our ability to model
complex networks. However, we are constrained in
two important, inviolable ways. First, we are
unwilling to simplify further the formulation for
the sake of computational tractability. Second, we
are committed to developing tools that rely on
standardized, transparent formulas so as to make it
as easy as reasonably possible for users of our tools
to extend them without expecting those users to
acquire (and get reliably good at) sophisticated
mathematical procedures.

This appendix is addressed to biologists who use
methods like ours to model epigenetic phenomena
and to those who have found themselves entangled
in problems that require them to solve ODEs with
a similar structure. Many biologists’ only famil-
iarity with numerical ODE solvers comes from the
canned routines provided by generic mathematical
software. Those routines, while excellent general-
purpose tools, may not allow customization for a
particular application, as we have begun to do with
Ingeneue. Thus we first outline the basics of
solving ODE systems, then describe our experi-
ence with two commonplace methods, and finally
describe two techniques which exploit specific
features of our modeling framework to accomplish
a great improvement in the speed at which we can
solve the models’ differential equations. We fully
expect these methods to be of wider use than for
our own problems.

Brief introduction to solving ODE
initial-value problems

This section is intended for readers who are
unfamiliar with numerical ODE solution methods;
those more familiar with these methods should
skip most of it and go on to the next section. Our
numerical solution task in the abstract is to
integrate this autonomous ODE initial-value
problem:

dy

dt
¼ f ðyÞ; yð0Þ

¼ yt¼0; y tð Þ¼ y1 tð Þ; y2 tð Þ; . . . yi tð Þ . . . yn tð Þf g; 0 � t � T:

ðB1Þ

In words, y is a vector and f is a vector function
that specifies how y changes over time as a function
of y itself. We want to know, given the formula for f
and some initial position y0, what unfolds as time
proceeds.8 Depending on the problem, we may be
interested in a specific time frame, or on limiting
behavior; we may be interested in just the
quantities y at some time t, or we may want to
know how it got there as well, and so forth. In the
case of a gene network model y1, y2, y3,y are the
concentrations of individual molecular species in
the model, indexed by cell or cell face, and f1, f2,
f3,y represent the kinetic formulae for each
molecular species. Each has the format

dyi
dt

¼ synthesis� decay � transformations� fluxes ¼ fi:

ðB2Þ
These four terms correspond to the four classes of
Affectors shown in Table 1. The simplest way to
get from one timepoint to another, given the
derivative formula f and the value of y at the
initial point, is according to the forward Euler
formula:

ytþh ¼ yt þ hf ðytÞ: ðB3Þ
The Euler formula is the prototype for all
numerical strategies for solving differential equa-
tions. Of course the Euler formula is only accurate
to the extent that the derivative does not change
across the interval h. So one solves a system of
differential equations across a large interval by
taking a series of time steps of size h across the
interval; consider

yt¼nh ¼ yt¼0 þ h
Xn�1

i¼0

f ðyihÞ; ðB4Þ

where nh is the interval we want to cross; as h gets
infinitesimal Eq. (B4) above approximates better
and better the integral

ynh ¼ y0 þ
Znh
0

f ðyÞdt: ðB5Þ

There are not many problems for which Euler’s
method approximates this formula for h large
enough to be efficient, because the derivative
usually does change as we cross h. At the least,
too great a time step results in ‘‘hopping’’ onto
trajectories further and further removed from the

8The time, t, does not usually appear explicitly in f, but if it did y
would include t as another state variable whose derivative formula
appears in f as the constant 1.0.
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‘‘true’’ one. Worse, if the system of ODEs is stiff,
with steps too large, wild oscillations may dom-
inate the time course of the solution. Of course the
extent to which these problems arise depends on
the system in question; even Euler’s method is
exact for a certain (uninteresting) class of equa-
tions. Every numerical analysis text (see Burden
et al., ’78; Johnson and Reiss, ’82) discusses the
following improvements to Euler’s method, none of
which one would likely choose for the kind of
problem we discuss here, but which easily convey
the gist of the problem and its solution:

ytþh ¼ yt�h þ hf ðytÞ; ðB6Þ

ytþh ¼ yt þ hf ðytþhÞ; ðB7Þ

ytþh ¼ yt þ hf ðyt þ 1
2hf ðytÞÞ; ðB8Þ

ytþh ¼ yt þ 1
2h f ðytÞ þ f ðyt þ hf ðytÞÞð Þ: ðB9Þ

The first is the midpoint method; the second is the
backward Euler formula; the third is the ‘‘modified
Euler’’ method; the last is Heun’s method. Note
that the backward Euler formula involves evaluat-
ing the value of f at yt+h, although we do not yet
know yt+h; thus it is an implicit formula that
requires solving a non-linear algebraic equation
system starting with some initial estimate of yt+h.
Also, Heun’s method averages the forward Euler
formula with an estimate of the backward Euler
formula, the latter computed using the result of
the forward formula as the estimate of yt+h.
Heun’s method, however, is explicit.

Each of these improvements to the prototype
tries to accomplish more or less the same thing: to
account for the fact that the derivative changes as
we cross h, or, in other words, to account for the
second and higher derivatives of y. This reminds
us that the Euler method corresponds to only the
first two terms of the Taylor series expansion
around the initial point yt:

ytþh ¼ yt þ hy0t þ
h2

2
y00t þ � � � þ hn

n!
y
ðnÞ
t þ � � � : ðB10Þ

In order to use more than just the first two terms
one would have to know not just a formula for the
first derivative of y with respect to time (f, that is)
but also the second partials with respect to each
component of y (the Jacobian matrix). This is not
suitable for a general ODE cookbook, especially as
the Jacobian may be very difficult to compute if
f is even moderately complicated. However, the

stereotyping of Ingeneue’s formulation means
that, since the formulas are all fairly straightfor-
ward, we could, for once and for all, compute all
the second partials. We have not pursued this
approach because we place a high premium on the
extensibility of our methods to accommodate new
cases. Requiring users of the method to write
formulas for the second partials accurately not
only would introduce an unsavory chore but would
also introduce an error-prone step sure to reduce
the reliability of the method.

Instead, the most straightforward strategy is to
use numerical methods that approximate the
higher-order terms of the Taylor series by general-
izations of the modified Euler, midpoint, or Heun
methods. So-called Runge–Kutta methods do
just that. These methods are wonderfully elegant;
in effect, they ‘‘feel’’ the local flow field around
the initial point for each step and then use that
information to build up a complete step by
linear combination of the local estimates.
The standard textbook fare is the fourth-order
Runge–Kutta method:

ytþh ¼ yt þ
h

6
m1 þ 2m2 þ 2m3 þm4ð Þ;

m1 ¼ f ðytÞ;
m2 ¼ f ðyt þ 1

2hm1Þ;
m3 ¼ f ðyt þ 1

2hm2Þ;
m4 ¼ f ðyt þ hm3Þ: ðB11Þ

This explicit recipe is trivially easy to program,
takes as its starting information only y at t, and
costs four derivative evaluations per step, while
making an error proportional to the fourth power
of h. In practice Eq. (B11) by itself is not suitable
for most purposes because there is no mechanism
expressed for truncation error estimation and
adjustment of the timestep h to keep truncation
error below some tolerance the user specifies.
However, there are straightforward strategies to
‘‘embed’’ a lower-order formula in a higher-order
one (say a fourth-order estimate in a fifth-order
one), so that a simple change in coefficients leads
to an estimate of the local truncation error. Such
methods allow one to automate changing h (at
every step if necessary) according to the magni-
tude of the local error, resulting in much better
efficiency for problems in which the scale of the
curvature in the solution changes over the course
of the trajectory toward the stopping point. These
methods provide both convenience and accuracy,
and the efficiency to be expected from what
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Numerical Recipes in C calls a ‘‘workhorse’’
(Press, ’92). Accordingly we have relied heavily
on a particular embedded scheme due to Cash and
Karp (’90). Our software Ingeneue includes a re-
implementation of the Cash–Karp method, in a
slightly simpler form than originally suggested by
Cash and Karp themselves, following code given in
Numerical Recipes in C. Indeed, as described
below, this scheme proved tough to beat for our
particular problems.

The only drawback to the Cash–Karp scheme
(and other embedded Runge–Kutta methods of
order greater than 4) is that six or more values of
the derivative function must be computed at each
step. This does not afflict another large class of
methods, called ‘‘multi-step methods,’’ because
they use the history of prior integration steps to
extrapolate estimates for the next value of y. Of
course this means one has to accumulate a little
history before one can use a multi-step formula.
Also, the easy-to-program multi-step methods
depend on having the history data evenly spaced;
thus one cannot easily change h at each step
without the cumbersome burden of reworking the
history list, either by interpolation or by directly
recomputing it (i.e., by using a one-step method to
execute a few steps). The potential payoff is that
each step with a multi-step method may require
only two or three evaluations of f per step. Thus if
a multi-step method can take steps at least half as
large as the steps taken by a Runge–Kutta method
of equivalent order it is perhaps to be preferred. As
we discovered from experience, that ‘‘if’’ clause
can become quite important.

The typical use of multi-step formulas requires
a pair, one of which is explicit and the other of
which is implicit. The explicit formula is used as a
‘‘predictor’’ of yt+h, and then this predicted value
is used as an initial estimate on the right-hand-
side of the implicit "corrector" formula. The
fourth-order Adams–Bashforth–Moulton method
looks like

yp;tþh ¼ yt þ
h

24
�9ft�3h þ 37ft�2h � 59ft�h þ 55ftð Þ;

yc;tþh ¼ yt þ
h

24
ft�2h � 5ft�h þ 19ft þ 9ftþhð Þ;

where ftþh ¼ f ytþhð Þ: ðB12Þ

Although the predictor formula requires only one
evaluation of the derivative, the corrector is an
implicit formula that must be solved iteratively for
the unknown yt+h; each estimate of yc,t+h is

substituted to calculate f for another pass:

ykþ1
c;tþh ¼ yt þ

h

24
ft�2h � 5ft�h þ 19ft þ 9f ðykc;tþhÞ
� �

;

y1
c;tþh ¼ yp;tþh; iterate until ykc;tþh � yk�1

c;tþho":

ðB13Þ
The textbook advice goes that as long as this
iteration process is converging, more than two
iterations of the corrector formula are a waste of
derivative calculations, and one should take a
smaller time step instead (Burden et al., ’78;
Johnson and Reiss, ’82; Press, ’92). The difference
between successive results is used to judge
convergence, and the difference between the
predictor’s estimate and the converged corrector’s
estimate is used to judge whether the accuracy is
adequate. Many implementations of this recipe
will accept early corrector estimates in the event
that the corrector iteration diverges but some
value along the way is within the error tolerance
of the predictor estimate. This may save some
function calls if we are not truly at risk from
instability, but if we are, then this strategy can
result (as we discovered from experience) in a local
bubble of instability that ends up demanding
smaller time steps than if we had done the extra
work to achieve convergence.

Experience with the Ingeneue framework,
and a way to exploit the stereotype

We coded and tested the fourth-order Adams–
Bashforth–Moulton predictor–corrector (APC)
method using the core segment polarity network
model as a test problem and compared its
performance relative to the Cash–Karp scheme
that we used to obtain all the results reported here
and in von Dassow et al. (2000). We were
disappointed to find that, no matter how we
manipulated the parameters governing the inte-
grator heuristics (e.g., the maximum number of
iterates allowed per step), there was no way to
make this method faster than the Cash–Karp
scheme. We realized why when we tried to relax
the requested error tolerance completely (i.e.,
allowing absolute errors of the same order as the
maximum values of the state variables) and found
that even then the APC method could not take
fewer time steps than when the required accuracy
was more stringent. In fact, this proved more or
less true of the Cash–Karp method as well. These
findings indicated that stability of the numerical
solution, not accuracy, is the main constraint on
the time step used in solving gene network models.
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While the Cash–Karp method fails to achieve
accuracy if the time step is too large, even when
the error tolerance is relaxed, the APC method
fails to achieve convergence on the corrector
formula. The reason has to do with the nature
of our equations and the resulting terms in
the Jacobian of f. The corrector formula will
converge if

9h

24

@f

@y

����
����

����
����o1: ðB14Þ

We have a case in which, depending on the
parameters of the model, this inequality may hold
only for a time step much smaller than could be
taken by some type of Runge–Kutta method that
does not involve fixed-point iteration. The primary
reason for this is sigmoid dose–response curves. If
the half-maximal activity coefficient is small (e.g.,
10�2) then the partial derivative of f with respect
to the regulator will be large. That is, there will be
a large change in the value of the sigmoid term for
a correspondingly small change in the regulator
concentration. This will be exacerbated with
larger values of the cooperativity coefficient.

When faced with the considerations above,
numerical analysts might advise turning to more
sophisticated methods like the Gear formulas,
which employ Newton’s method to solve the
corrector formula instead of fixed-point iteration.
However, Newton iteration requires that one
know the Jacobian of f, so we are back to the
problem that if we are to preserve extensibility
then we can not expect users of our methods to
derive reliable formulae for all the second partials
and write the code to sort them out properly. We
could estimate the Jacobian numerically, but this,
too, is an error-prone process. Finally, it is not at
all clear that Gear’s method or any other stiff
solver would improve matters, because our equa-
tions are only mildly stiff, and the burden of
computing and inverting the Jacobian may vastly
outweigh any benefit gained from taking a larger
step size.

It should be kept in mind that in our application
we are obliged to vary essentially all the para-
meters of the model over very wide ranges. Given
certain parameter sets, straightforward integra-
tion methods like the Cash–Karp scheme allow us
to take giant leaps along the trajectory. The
trouble is that with another choice of parameters
the same method might bog down with tiny time
steps. The Cash–Karp method, for instance, is not
fond of second-order reactions (hetero-dimeriza-
tions) with high rate constants. We could, and

may in the future, try to develop run-time
heuristics that switch among different methods
according to how difficult the model is expected to
be with the present parameter choices, attempting
to choose the best performer for each case.
The drawback is that this approach, again, would
likely require users to become skilled in an
onerous task to ‘‘train’’ those heuristics with each
model.

However, we are free of generalist considera-
tions; we do not need a solver that works well for
any foreseeable system, we need one that solves
our problem with the greatest efficiency. Thus we
sought ways to exploit the specific nature of our
modeling framework to see if we could improve the
performance of simple solvers like the ABM
method. In our problem it turns out that each
and every equation follows a stereotypical, generic
formula that, within the context of the choices we
made about how to model molecular interactions,
encompasses almost every imaginable kind of
intermolecular reaction. The generic formula (in
dimensionless form) can be written as

dyi
d�

¼ Fð�yyj6¼iÞ �Gð�yyj6¼iÞyi �Hyi þKyn: ðB15Þ

This looks rather similar to Eq. (B2), but in fact
there is not a one-to-one map between the terms.
Equation (B2) groups terms according to the kind
of reaction; Eq. (B15) groups terms according
to how they depend on the components of y, the
vector of concentrations of individual molecular
species, indexed by cell or cell face. yi is thus an
individual species in a particular compartment.
yn represents the same species in adjacent
compartments (e.g., a neighboring cell).

As far as we have been able to foresee, the four
types of terms in Eq. (B15) cover every kind of
reaction that would happen to a molecule and that
we would be disposed to model as an elementary
process, with one exception that will be mentioned
below. F( ) represents non-linear terms that are
functions of other species’ concentrations, but not
of the species governed by that term. Such terms
include transcription rate as a function of the
concentration of regulator species. G( ) represents
terms in which a non-linear function of other
species multiplies the concentration of the species
governed by the term. Examples include regulated
cleavage and heterodimerization; these terms al-
ways subtract from the concentration of the
species in question because they are converting it
to some other form. The term involving the
constant H represents first-order reactions that
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remove the species in question; decay, flux to
neighboring compartments, dissociation, or unre-
gulated processes like constitutive conversion to
another form (e.g., dephosphorylation). Again,
such terms are always subtracted. Finally, the
constant K represents the reverse of H, and
typically includes flux from another compartment.
Strictly speaking, there is no reason K is not
encompassed by F( ), but we break it out because
of the conceptual distinction.

We noticed that every term involving yi is linear
in yi. (Again, there is an exception to be mentioned
below, and there would be no such opportunity if
we collapsed mRNAs and proteins into a single
molecular species, as do many modelers.) Using
the backward Euler formula for simplicity of
illustration, this special structure allows the
following rearrangement:

yi;tþh ¼yi;t þ hf ðytþhÞ ¼ yi;t þ h Fðytþh;j6¼iÞ
�

�Gðytþh;j6¼iÞyi;tþh �Hyi;tþh þKyj6¼i;tþhÞ ðB16Þ
becomes

yi;tþh ¼
yi;t þ h Fðytþh;j6¼iÞ þKyj6¼i;tþh

� �
1 þ h Gðytþh;j6¼iÞ þH

� � : ðB17Þ

For lack of a better term we call this a ‘‘semi-
explicit’’ formula because it is explicit for yi,t+h but
in terms of unknown yjai,t+h. Here, the coefficient
in front of the norm of the Jacobian in Eq. (B14)
will be smaller in proportion to the size of G( )þH.
These can be very large, and in fact since these are
(depending on the parameter set) often the largest
terms in the derivative, it is these terms which
make the equations hard for the Cash–Karp
method to solve. Here, instead, they will help,
rather than hinder, us to get convergence in a
corrector iteration. The equations may still be
stiff, but we should now be able to outrun the
adaptive-stepsize Runge–Kutta method when the
parameters are such as to render the equations
stiff.

Practical tests using various versions of the
segment polarity model show that an APC
implementation using the fourth-order equivalent
of Eq. (B17) (which we refer to as SEAPC for
‘‘Semi-Explicit Adams Predictor–Corrector’’) does
indeed outrun the Cash–Karp method. Our stan-
dard practice has been to impose an absolute error
tolerance of 10�4 (on dependent variables which,
rendered dimensionless, range from 0.0 to 1.0).
For the simple segment polarity model (‘‘spg1’’)
discussed here and in von Dassow et al. (’00),
SEAPC solves a suite of test parameter sets in

approximately 70% of the time required by the
Cash–Karp method. However, for a more complex
model the difference is greater; for the model
‘‘spg4’’ described in the companion paper by von
Dassow and Odell (’02, this issue), the new method
is at least 3-fold faster than the Cash–Karp
method. A similar speed-up was obtained with a
fairly complex model of the neurogenic network
(Meir et al., unpublished observations). We be-
lieve, but have not rigorously verified, that the
difference in the speed-up achieved has to do with
the relative proportion of F( ) and K versus G( )
and H terms in the model. Both spg4 and the
neurogenic network model involve more hetero-
dimerization reactions than spg1.

It occurred to us that if stability were the
primary issue, then we ought to be able to achieve
similar or greater gains using the backward Euler
formula, rearranged as in Eq. (B17), instead of the
fourth-order SEAPC method. With the error
tolerance set to 10�4 the semi-explicit backward
Euler (SEBE for ‘‘Semi-Explicit Backward Euler’’)
method is a poor competitor. However, with error
tolerance of 10�2 or 10�1, we achieve a 10- or 20-
fold speed-up, respectively, on spg4. Of course in
practice one would be uncomfortable using such
lenient error tolerances; however, recall that in
our application we are typically looking for
attractors, and must search iteratively through
hundreds of thousands of parameter sets. Thus,
we can use a lenient error tolerance and the SEBE
method to screen the random samples, then test
any ‘‘good’’ sets found by the low-accuracy method
with a high-accuracy SEAPC or Cash–Karp meth-
od. We have verified that the low-accuracy SEBE
method has the following properties:

(1) Any parameter set found using SEBE would
have been found by the Cash–Karp method too;

(2) SEBE correctly solves the vast majority of
parameter sets found by the Cash–Karp method;

(3) When SEBE is used, the time required to
solve the model is far less sensitive to the choice of
parameters than the Cash–Karp method.

We cannot overstate the potential impact of this
discovery on our work; this means that we can
now accomplish in a day a search that would have
required several weeks of computer time using the
Cash–Karp method, without sacrificing much
accuracy. In dollar terms, it means we can do
with a $10,000 computer network what would
have required $200,000 worth of computers absent
this invention. These comparisons apply to using a
search strategy as described above, in which a
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rough cut with SEBE is used to ‘‘filter’’ the
primary samples and the few that get through are
verified with SEAPC or Cash–Karp. Our software,
Ingeneue, incorporates the fourth-order APC,
Cash–Karp, SEBE, and SEAPC methods, and it is
an easy matter of inserting in an input script a flag
instructing the program which integrator to use.

The one exception we have encountered is cases
in which molecular species form homo-dimers.
Then there is a term equivalent to G( ) in Eqs.
(B15–B17) in which the derivative of yi depends
non-linearly on yi itself (the term is a second-order
rate constant times the square of yi). One can still
conduct the rearrangement shown from Eqs.
(B16) and (B17), but no longer is Eq. (B17) explicit
in yi. The algebra still comes out, and Eq. (B17)
still converges better than Eq. (B16). As far as we
can tell, the rearrangement can only help (as long
as the terms moving around are, first of all,
divisible by yi, and second, negative-valued in the
original form). In fact, one could choose to leave
terms non-linear in yi alone. This is good: to be
used in this method, Affectors, if they depend on
yi, must have coded into them a function that

returns G( ) or H. Affectors that supply this
function set a flag telling the integrator that they
may be rearranged. Should the user, when coding
a new Affector, neglect or prefer not to supply such
a function, the integrator simply leaves the
Affector on the right-hand side as is. This does
no violence to the SEBE or SEAPC methods, but it
may render them not quite as efficient as they
could be.

Many applications may benefit from a similar
approach to solving large ODE systems. Any
system, (1) the component equations of which
break down into additive terms, (2) in which there
are negative-valued terms involving products of
the dependent variable (even if there are other
terms involving the dependent variable), (3) in
which those terms are potentially large compared
to the other terms, and (4) for which the problem
involves screening vast numbers of integration
runs, can probably benefit from a similar scheme.
Possibilities include simulations of chemical reac-
tion systems, population ecology models, non-
linear neural network-type models, and probably
others as well.
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